
. ' ..

Basic Local Alignment Search Tool

Stephen F. Altschul', Warren Gish', Webb Miller2
Eugene W. Myers3 and David J. Lipmanl

'Satwnal Center for Biotechnology Informalion
Kdional Library of Medicine, National Institutes of Health

Bethesda, M D 20894, UX-4.
2Departmenl of Computer Science

The Pennsylvania State University, University Park, P A 16802, U.S.A.
=Department of Computer Science

University of Arizona, T w o n , A2 85721, U.S.9.

(Received 26 February 1990; accepted 15 May 1990)

A ne& approach to rapid sequence comparison, basic local alignment search tool (BLAST),
directly approsimates alignments that optimize a measure of local similarity, the maximal
segment pair (3ISP) score. Recent mathematical results on the stochastic properties of MSP
scores allow an anallrsis of the performance of this method as well as the statistical
significance of alignments it generates. The basic algorithm is simple and robust; it can be
implemented in a number of ways and applied in a variety of contexts including straight-
forward DKB and protein sequence database searches, motif searches, gene identification
searches, and in the analysis of multiple regions of similarity in long DXA sequences. In
addition, to its flexibility and tractabi1it.y to mathematical analysis, BLAST is an order of
magnitude faster than existing sequence comparison tools of comparable sensitivity. .

1. Introduction

The discovery of sequence homology to a known
protein or family of proteins often provides the first
clues about the function of a newly sequenced gene.
As the DNA and amino acid sequence databases
continue to grow in size they become increasingly
useful in the analysis of newly sequenced genes and
proteins because of the greater chance of finding
such homologies. There are a number of software
tools for searching sequence databases but all use
some measure of similarity between sequences. to
distinguish biologically significant relationships
from chance similarities. Perhaps the best studied
measures are those d in conjunction with varia-
tions .of the dynamic programming algorithm
(X'eedleman 8c Wunsch, 1970; Sellers, 1974; Sankoff
8: Kruskal, 1983; Waterman, 1984). These methods
assign scores to insertions, deletions and replace-
ments, and compute an alignment of two sequences
that corresponds to the least costly set of such
mutations. Such an alignment may be thought of as
minimizing the evolutionary distance or maximizing
the similarity between the two sequences compared.
In either case, the cost of this alignment is a
measure of similarity; the algorithm guarantees i t is

optimal, based on the given scores. Because of their
computational requirements, dynamic program-
ming algorithms are impractical for searching large
databases without the use of a supercomputer
(Gotoh & Tagashira, 1986) or other special purpose
hardware (Coulson et al., 1987).

Rapid heuristic algorithms that attempt to
approximate the above methods have been deve-
loped (Waterman, 1984), allowing large databases
to be searched on commonly available computers.
In many heuristic methods -the measure of -simi-
larity is not explicitly defined as a minimal cost set
of mutations, but instead is implicit in the algo-
rithm itself. For example, the FASTP program
(Lipman d: Pearson, 1985; Pearson 8: Lipman, 1988)
first finds locally similar regions between two
sequences based on identities but not gaps, and then
rescores these regions using a measure of similarity
between residues, such as a PAM matrix (Dayhoff et
al., 1978) which allows conservative replacements as
well as identities to increment the similarity score.
Despite their rather indirect approximation of
minimal evolution measures, heuristic tools such as
FASTP have been quite popular and have identified
many distant but ' biologically significant
relationships.

403
00.)2-2S36~90/lSaM34-08 $03.00/0 0 1990 Acrdemic Press Limited

404 S. F. Altschul et a l .

In this paper we describe a new method, BLASTt
(Basic Local Alignment Search Tool), which
employs a measure based on well-defined mutation
scores. It directly approximates the r e su l t s t ha t
would be obtained by a dynamic programming algo-
rithm for optimizing this measure. The method will
detect weak but biologically significant sequence
similarities, and is more than an order of magnitude
faster than existing heuristic algorithms. .

2. Methods
(a) The marinad seqmeni pair mensure

Sequence similarity measures generallv can be classified
as either global or local. Global similarity algorithms
optimize the overall alignment of two sequences, which
may include large stretches of low similarity (Needleman
& Wunsch, 1970). Local similarity algorithms seek only
relatively conserved subsequences, and a single compari-
son may yield several distinct subsequence alignments;
unconserved regions do not contribute to the measure of
similarity (Smith & Waterman, 1981; Goad & Kanehisa,
1982; Sellers, 19%). Local similarity measures are
generally preferred for database searches, where cDNAs
may be compared with partially sequenced genes, and
where distantly related proteins may share only isolated
regions of similarity, e.g. in the vicini@ of an active site.

Nany similarity measures, including the one we
employ, begin with a matrix of similarity scores for all
p'assible pairs of residues. Identities and conservative
replacements have positive scores, while unlikely replace-
ments have negative scow. For amino acid sequence
comparisons we generally use the PAM-120 matrix (a
variation of that of Dayhoff et al., 1978); while for DNA
sequence comparisons we score identities +5, and
mismatches -4, other scores are of course possible. A
sequence segment is a contiguous stretch of residues of
any length, and the similarity score for two aligned
segments of the same length is the sum of the similarity
values for each pair of aligned residues.

Given these rules, we d e h e a marimal segment pair
(NSP) to be the highest scoring pair of identical length
segments chosen from 2 sequences. The boundaries of an
XSP are chosen to maximize its score, sa an MSP may be
of any Iength. The NSP score, which BLGT heuristically
attempts to calculate, provides a me- of local simi-
larity for any pair of sequences. X molecular biologist,
however, may be interested in all conserved regions
shared by 2 proteins, not only in their highest scoring
pair. We therefore define a segment pair to be locally
maximal if ' i t s score .cannot be 'improved either by
extending or by shortening both segments (Sellers, 1984).
BLAST can seek all locally maximal , v e n t pairs with
scores above some cutoff.

Like many other similarity measures. the MSP score for
2 sequences may be computed in time proportional to the
product of their lengths using a simple d-mamic program-
ming algorithm. An important advantage of the MSP
meaaure is that recent mathematical results allow the
statistical significance of MSP scores to be estimated
under an appropriate random sequence model (Karlin &
Altschul, 1990; Karlin ef al., 1990). Furthermore. for any

t Abbreviations used: BLAST, blast local alignment
search tool; MSP, maximal segment pair: bp,
base-pair(s).

particular scoring matrix (e.g. PAH-1-20) one can estimate
the frequencies of paired raiduea in maximal segments.
This tractability to mathematical analysis is a crucial
feature of the BLAST algorithm.

(b) Rapid appozimaiion of MSP scores

In searching a database of thousands of sequences,
generally only a handful, if any, will be homologous to the
query sequence. The scientist is tberefore interested in
identifying only those sequence entries with MSP scores
over some cutoff score S. These sequences indude those
sharing highly significant similarity vith the query as well
as some sequences with borderline scores. This latter set
of sequences may indude high scoring random matches as
well as sequences distantly related to the query. The
biological significance of the high scoring sequences may
be inferred almost solely on the basis of the similarity
score, while the biological contert of the borderline
sequences may be helpful in distinguishing biologically
interesting relationship.

Recent results (Kariin 6 Altschnl, 1990; Karlin et al.,
1990) allow us to estimate the high& YSP score S a t
which chance similarities are likely to appear. To accel-
erate database searches, BLUT minimizes the time spent
on sequence regions whose sirnilaritp with the query has
little chance of exceeding this score. Lzt a word pair be a
segment pair of fixed length w. Tbe main strategy of
BLAST is to seek only ? p e n t pairs that contain a word
pair with a score of a t least T. & ! S i n g through a
sequence, one can determine quicklF ahether it contains a
word of length w that can pair wit! the q u e v sequence to
produce a word pair with a score gkater than or equal to
the threshold T. Any such bit is enended to determine if
it is contained within a v e n t pair whose score is
greater than or equal to S. The lower the threshold T, the
greater the chance that a segment pair with a score of at
least S will contain a word pair with P score of at least T .
A small value for T. howerer. increases the number of hits
and therefore the execution time of the algorithm.
Random simulation prmits us to s e l e c t a threshold T
that balances these considerations.

(c) implenzenLatbnt

In our implementations of this approach, details of the
3 algorithmic steps (namely compiling a list of high-
scoring words, scanning the database for hits, and
extending hits) vary somewhat depending on whether the
database contains proteins or DXA ,squences. For pro-
teins, the list consists of all words (u-mers) that score at
least T when .-compared to some word in the query
sequence. Thus, a query aord may be represented by no
words in the list (e.g. for common wmers using PAM-120
scores) or by many. (One mav. of course. insist that every
wmer in the quen. sequene be included in the word list.
irrespective of whether pairing the a d with itself yields
a score of at least T.) For ralues of v and T that we have
found.most useful (see below), there are typically of t h e
order of 50 words in the list for eTec- residue in the query
sequence, e.g. 12.500 words for .a sequence of length 250.
If a little care is taken in programming, the list of words
can be generated in time e n t i a l l ? - proportional to t h e
length of the list.

The scanning phase r a i s e d a clasie algorithmic prob-
lem, i.e. search a lopg y u e n c e for all occurrences of
certain short sequences. N e investigated 2 approaches.
Simplified, the first works as folloux Suppose that w = 3
and map each word to an integer beheen 1 and 204, so a

word can be used as an index into an array of size
204 = 160,000. Let tb ith entry of Such an array point to
the list of all occurrences in the query sequence of the ith
word. Thus, as we scan the database, each database word
I d s us immediate+ to the corresponding hits. Typically,
only a fen thousand of the 20‘ possible words will be in
this table. and it is e q to modify the approach to use far
fewer than 204 pointers.

The second approach we explored for the scanning
phase was the use of a deterministic finite automaton or -

finite state machine (Mealy, 1955; Hopcroft & Ullman,
1979). An important feature of our construction was to
signal acceptance on transitions (hlealy paradigm) as
opposed to on states (Moore paradigm). In the automa-
ton’s construction, this sard a factor in space and time
roughly p r o p o r t i d to the size of the underlying
alphabet. This metbod yielded a program that ran faster
and we prefer this approach for general use. With typical
query lengths and parameter settings, this version of
BLAST scans a protein database at approximately
500,000 residue&

Extending a hit. to iind a locally maximal segment pair
containing that hit is straigbtfonvard. To economize time,
we terminate the prowss of extending in one direction
when we reach a w e n t pair whose score falls a certain
distance below the best score found for shorter extensions.
This introduces a farther departure from the ideal of
finding guaranteed JlSPs, but the added inaccuracy is
negligible, as can be demonstrated by both experiment
and analysis (e-g. for protein comparisons the default
distance is 20, and the probability of missing a higher
scoring extension is about 0-001).
For DKA, we ase a simpler word list, i.e. the list of all

contiguous wmers in the query sequence, often with
w = 12. Thus, a sequence of length n yields a list of
n-w+ 1 words, a d , again there are commonly a few
thousand words in the list. It is advantageous to compress
the database by paking 4 nucleotides into a single byte,
using an auxiliarr table to delimit the boundaries between
adjacent sequen- Assuming w 2 11, each hit must
contain an 8-mer hit that lies on a byte boundary. This
observation allows us to scan the databaee byte-wise and
thereby increase speed &fold. For each 8-mer hit, we
check for an endosing *mer hit; if found, we extend as
before. Running on a SUX4, with a query of t y p i a l
length (e.g. several thousand bases), BLAST scans at
approximately 2 x le bases/s. At facilities which run
many such searches a day, loading the compressed data-
base into rnemoq once in a shared memory scheme
affords a substantid saving in subsequent search times.

It should be noted that DNA sequences are highly non-
random, with I d y biased base composition (e.g.
A +T-rich regions), and repeated sequence elements (e.g.
A h sequences) and this has important consequences for
the design of a DSA database search tool. If a given
query sequence has, for example, an A+T-rich sub-
sequence, or a commonly occurring repetitive element,
then a database eearch mill produce a copious output of
matches with little interest. We have designed a some-
what & hoc but dective means of dealing with these 2
problems. The program tha t produces the compressed
version of the DSA database tabulates the frequencies of
all &tuples. Those cxcurring much more frequently than
expected by chance [controllable by parameter) are stored
and used to filter “uninformative” words from the query
word list. Also, preceding full database searches, a search
of a sublibrary of repetitive elements is performed, and
the locations in tbe query of significant matches are
stored. Words genemted by these regions are removed

from the query word list for the full search. Matches to
the sublibrary, however, are reported in the final output.
These 2 filters allow alignments to regions with biased
composition, or to regions containing repetitive elements
to be reported, as long as adjacent regions not containing
such features share significant similarity to the query
sequence.

The BLAST strategy admits numerous variations. We
implemented a version of BLAST that uses dynamic
programming to extend hits so as to allow gaps in the
resulting alignments. Keedless to say, this greatly slows
the extension process. While the sensitivity of amino acid
searches was improved in some cases, the selectivity was
reduced as well. Given the trade-off of speed and selec- .
tivity for sensitivity, it is questionable whether the gap ,

version of BLAST constitutes an improvement. We also
implemented the alternative of making a table of all
occurrences of the ro-mers in the database, then scanning
the query sequence and processing hits. The disk space
requirements are considerable, approximately 2 computer
words for every residue in the database. More damaging
was that for query sequences of typical length, the need
for random access into the database (as opposed to
sequential access) made the approach slower, on the
computer systems we used, than scanning the entire
database.

3. Results
To evaluate the utility of our method, we describe

theoretical results about the statistical significance
of MSP scores, study the accuracy of the algorithm
for random sequences at approximating MSP scores,
compare the performance of the approximation to
the full calculation on a set of related proEin
sequences and; finally, demonstrate its performance
comparing long DKA sequences.

(a) Performance of BLAST with random sequen-k

Theoretical results on the distribution of MSP
scores from the comparison of random sequences
have recently become available (Karlin & Altschul,
1990; Karlin et d.,. 1990). In brief, given a set of
probabilities for the occurrence of individual
residues, and a set of scores for aligning pairs of
residues, the theory provides two parameters 1. a n d
K for evaluat ing the statistical significance of hfSP
scores. When two random sequences of lengths m
and n are compared, the probability of finding a
segment pair with a score greater than or equal t o
S is:

1 - e-y, (1)

where y = Kmn e-IS. More generally, the prob-
ability of finding c or more distinct segment pairs,
al l with a score of at least S, is given by the formula:

Using this formula, two sequences that share several
distinct regions of similarity can sometimes be
detected as significantly, related, even when no
segment pair is statistically significant in isolation.

\Chile finding an JISP with a p-value of0.001 may
be snrprising when two specific sequences are
compared, searching a database of 10,000 sequences
for similarity to a que? sequence is likely to turn
up ten such segment pairs simply by chance.
Segment pair p-values must be discounted accord-
ingly when the similar segments are discorered
through blind database searches. Using formula (1).
we can calculate the approximate score an JISP

' must have to be distinguishable from chance
similarities found in a database.

We are interested in finding only segment pairs
d t h a score above some cutoff S . The central ides of
the BLAST algorithm is to confine attention to
segment pairs that contain a word pair of length ZL'
with a score of at least 3". It is therefore of interest
to know what proportion of segment pairs with a
given score contain such a word pair. ,This question
makes sense onl_v in the contest of some distribution
of high-scoring segment pairs. For MSPs arising
from the comparison of random sequences, Dembo
& Karlin (1991) provide such a limiting distribution.
Theory does 'not _vet exist to calculate the prob-
ability q that such a segment pair will fail to contain
a word pair with a score of at least T. However, one
argument suggests that q should depend exponen-
tially upon the score of the JISP. Because the
frequencies of paired letters in JISPs approaches a
limiting distribution (Knrlin Cy- Altschul, 1990), the
expected length of an JISP grows linearly with its
score. Therefore, the longer an JISP, the more inde-
pendent chances it effectively has for containing a
word with a score of at least T, implying that q
should decrease esponentially with increasing MSP
score S.

To test this idea, we generated one million pairs
of "random prott4n sequenws (using typical amino
acid frut1ltcncic.s) of' lrnpth 250. sud found thc MST'
for each using I 'XJI-I% SWIVS. I n Fig1lt.c. 1 , wc plot
the lognrithrn (I f ttrc' f rac t ion p o f 1ISl's witlr woru S
t h a t [l o not contraill tt \ W N ~ pair of ltwgtlr f o ~ ~ r with
s w r c a k t Iemt 1s. S i ~ w thr v:dttt*s slrow~~ t lrc suhjtrct
t o &tt,ist i d varintiotr. erwr bnw rt!prr>setlt one

..

Basic Local Alignment Search Tool 407

Table 1
The probabiZity of a hit ai various settings of the parameters ur and T, and the

proportion of random MSPs missed by BLAST

Linear regression
-In (q) = aS+b Implied yo of MSPs missed by BLAST ahen S equals

Probability of a
W T hit x 10' a b 45 50 55 60 65 io

- -
i J

~

3 11 253 01236 - 1.005
12 I47 008i5
13 83

-0.746
m 2 5

14
-0.550

48 00463 -0461
15 26 00328
16 14 00232 -0263

- 0.353

1; I 00158
1s

-0191
4 00109 -0.137

4 13 12i 01 I92 - 1.278
14 7s 0.0904 - 1.012
15 4 i 00686
16

-0802
28 0.0519 -e634

If 16 00390
18 9

-0498

19 5
00290 -0387
00215 -0298

20 3 00159 - 0234
5 15 64 01137

16 40 0 8 8 2
- 1.525 - 1.207

17 25 00679 -0939
18 15 00529
19

-0.754
9 0-0413 - 0608

20
21 3

5 00327
00257

-0.506
- 0420

22 - 9 00200 -0343

Expected no. of random WPs with score at least S:

1
4

11
20
33
46
59
70

2
5

10
18
28
40
51
62
3
6

12
20
29
38
4 s
57
50

1
3
8

16
28
41
55
67

1
3
7

23
14

35
46
57
2
4
9

15
23
32
42
52
9

0 0 0
2 1 1
6 4 3

12 IO 8
23 20
36

l i
32 29

51 47 43
63 60 55

1 0 0
2 1 1
5 4 3

11 8 6
19 16 13
30 26
41

'2
3i 33

53 49 4.5
1 1 0
3 2 1
6 4 3

12 9
19 15 13
28 23 20
37 32
47

99
42 38

2 0 3 0-06

-
I

0
0
2
6

14

40
26

54
0
0
2
5

11
19
30
41
0
1
2

10
5

17
25
35

00 1

0
0
'7

23
12

37
51
0
0
1
4
9

1;
27
38
0
0
2
4
8

14
22
31

@002

3

chance of a hit. ;Examining Table 1, it is apparent
that the parameter pairs (w = 3, T = 14), (to = 4,
T = 16) and (w = 5, T = 18) all have approximately
equivalent sensitivity over the relevant range of
cutoff scores. The probability of a hit yielded by
these parameter pairs is seen to decrease for
increasing tu; the same also holds for different levels
of sensitivity. This makes intuitive sense, for the
longer the word pair examined the more informa-
tion gained about potential RZSPs. Maintaining a
given level of sensitivity, we can therefore decrease
the time spent on step (3), above, by increasing the
parameter tu. However, there are complementary
problems created by large w. For proteins there are
20" possible words of length w, and for a given level
of sensitivity the number of words generated by a
query grows exponentially with w. (For example,
using the 3 parameter pairs above, a 30 residue
sequence wits found to generate word lists of size
296, 3561 and 40,939 respectively.) This increases
the time spent on step (l) , and the amount of
memory required. In practice, we have found that
for protein searches the best compromise between
these considerations is with a word size of four; this
is the parameter setting we use in all analyses that
follow.

Although reducing the threshold T improves the
approximation of MSP scores by BLAST, i t also
increases execution time because there will be more
words generated by the query sequence and there-
fore more hits. What value of T provides a reason-

able compromise between the considerations of
sensitivity +nd time? To provide nurnerica1 data, we
compared a random 250 residue sequence against
the entire PIR database (Release 23.0, 14,372
entries and 3,977,903 residues) Kith T ranging from
20 to 13. I n Figure 2 we plot the execution time
(user time on a SUN4-280) n e r m the number of

Figure 2. The central processing unit time requited to
execute BLAST on the PIR protein database (Release
230) as a function of the size of the word list generated.
Points correspond to values of the threshold parameter T
ranging from 13 to 20. Greater values of T imply fewer
words in the list.

405 S . F . Altschul et al.

Table 2
T h e central pmcessing unit time required to ezecute

BLAST as a function of the approximate probability
q of missiltg an MSP zuith-score S

q (Yo1 CF’U time (9)

2 39 25 17
5

12
25 17 12 9

10 l i 12 9
m

i
12 9 I 5

S: !u 55 70 90
p-value 1.0 0 8 0.01 10-s

Times are for searching the PIR database (Release 23-0) with a
random queT sequence of length 250 using 8 SW4-280. CPU,
central processing unit.

words generated for each value of T. Although there
is a linear relationship between the number of words
generated and execution time, the number of words
generated increases exponentially with decreasing T
over this range (as seen by the spacing of x values).
This plot and a simple analysis reveal that the
expected-time computational complexity of BUST
is approximately aW+bN+cNW/20”, where W is
the number of words generated, N is the number of
residues in the database and a, b and c are
constants. The W terrn accounts for compiling the
ward list, the N term coven the database scan, and
thg N W term is for extending the hits. Although the
number of words generated, W, increases exponen-
tially with decreasing T , i t increases only linearly
with the length of the query, so that doubling the
query length doubles the number of words. We have
found in practice that T = 17 is a good choice for
the threshold because, as discussed below, lowering
the parameter further prondes little improvement
in the detection of actual homologies.

3LAST’s direct tradeoff between accuracy and
speed is best illustrated by Table 2. Given a specific
probability q of missing a chance MSP with score S,
one can calculate what threshold parameter T is
required, and therefore the approximate execution
time. Combining the data of Table 1 and Figure 2,
Table 2 shows the central processing unit times
required (for various values of q and S) to search the
current PIR database with a random query
sequence of Iength 250. To have about. a 10%

I chance of missing an MSP with the statistically
significant score of 70 requires about nine seconds of
central processing unit time. To reduce the chance
of missing such an MSP to 2% involves lowering T,
thereby doubling the execution time. Table 2 illus-
trates, furthermore, that the higher scoring (and
more statistically significant) an MSP, the less time
is required to find i t with a given degree of
certainty.

(c) Performanee of BLAST with
hmnoZogo2cs sequences

To study the performance of BLAST on real data,
we compared a variety of proteins with other

members of their respective superfamilies (Dayhoff,
1978), computing the true MSP scores as well as the
BLAST approximation with word length four and
various settings of the parameter T. Only with
superfamilies containing many distantly related
proteins could we obtain results usefuIly comparable
with the random model of the previous section.
Searching the globins with woolly monkey myo-
globin (PIR code MDfQW), we found 178
sequences containing MSPs with scores between 50
and 80. Using word length four and T parameter 17,
the random model suggests BUST should miss
about 24 of these MSPs; in fact, it misses 43. This
poorer than expected performance is due to the
uniform ‘pattern of conservation in the gIobins,
resulting in a relatively small number of high-
scoring words between distantly related proteins. A
contrary example was provided by comparing the
mouse immunoglobulin K chain precursor V region
(PIR code KVXSTl) with immunoglobulin
sequences, using the same parameters aa previously.
Of the 33 MSPs with scores between 45 and 65,
BLAST missed only two; the random model
suggests it should have missed eight. In general, the
distribution of mutations along sequences has been
shown to be more clustered than predicted by a
Poisson process (Uzzell & Corbin, 1971), and thus
the BLAST approximation should, on average,
perform better on real sequeny than predicted by
the random model.

BLAST’S great utility is for &ding high-scoring
MSPs quickly. In the examples above, the algo-
rithm found all but one of the 89 globin MSPs with
a score over 80, and all of the 12.5 immunoglobulin
MSPs with a score over 50. The orerall performance
of BLAST depends upon the distribution of MSP
scores for those sequences related to the query. I n
many instances, the bulk of the XSPs that are
distinguishable &om chance hare a high enough
score to be found readily by B U S T , even using
relatively high values of the T parameter. Table 3
shows the number of MSPs with a score above a
given threshold found by BLAST when searching a
variety of superfamilies using a Fariety of T para-
meters. In each instance, the threshold S is chosen
to include scores in the borderline region, which in a
full database search would include chance similar-
ities as well as biologically significant relationships.
Even with T equal to 18, virtually all the statisti-
cally significant MSPs are found in most .instances.

Comparing BLAST (with parameters w = 4,
T = 17) to the widely used FASTP program
(Lipman & Pearson 1985; Pearson & Lipman, 19SS)
in its most sensitive mode (kfup = I) , we have found
that BLAST is of comparabIe sensitivity, generaiIy
yields fewer false positives (high-scoring but unre-
lated matches to the query), and is over an order of
magnitude faster.

(d) Comparison of two long D X A sequences
Sequence data exist for a 73,360 bp section of the

human genome containing the blike globin gene

I

Basic Local Alignment Search Tool 409

Table 3
Th numb& of MSPs found by BLAST when searching various protein

superfamilies in the P I R database (Release 22-0)

PIR code of Superfamily
query sequence searched

mw Q w
K\WSTl

Giobin

OKBOG
Immunoglobulin
Protein kinase

ITHU
KYBOA

Serpia

CCHU
Serine protease

FECF
*borne c
Fedox in

Cutoff
score S

47
45
52
50
49
46
44

Number of MSPs with score s t least S
found by BLAST with T parameter set to

22 20 19 18 17 16 15

115 169 178 222 238 25.5 281
153 155 155 156 156 157 158

9 42 47 59 60 60 60
12 12 12 12 12 12 12
59 59 59 59 59 59 59
81 91 91 96 98 98 48
22 23 23 24 2.4 24 24

Sumber of MSPs
in superfamily

with score
at least S

285
158
60
12
59
98
24

NIXQU‘, WOOIJ? monkey myoglobin; KVhlST1, mouse Ig K chain precursor V region; OKBOG. borine &?@-dependent protein
k i n a s e ; ITHU, hnman a-1-antitrlpsin precursor; KYBOA. bovine chymotrypsinogen A, CCHU. human cytochrome c; FECF,
Chbrobium sp. ferredoxin.

cluster and for a corresponding 44,595 bp section of
the rabbit genome (Margot et al., 1989). The pair
exhibits three main classes of locally similar regions,
namely genes, long interspersed repeats and certain
anticipated weaker similarities, as described below.
We used the BL4ST algorithm to locate locally
similar regions that can be aligned without intro-
duction of gaps.

The human gene cluster contains six globin genes,
denoted E , ‘ y , q, 6 and 8, while the rabbit cluster
has only four, namely E , y, 6 and 8. (Actually, rabbit
6 is a pseudogek.) Each of the 24 gene pais , one
human gene and. one rabbit gene, constitutes a
similar pair. An alignment of such a pair requires
insertion and deletions, since the three exons of one
gene generally differ somewhat in their lengths from
the corresponding exons of the paired gene, and
there are even more extensive variations among the
introns. Thus, a collection of the highest scoring
alignments between similar regions can be expected
io have at least 24 alignments between gene pairs.

Nammatian genomes contain large numbers of
long interspersed repeat sequences, abbreviated
LINES. In particular, the human P-like globin
cluster contains two overlapped L1 sequences (a
type of LINE) and the rabbit cluster has two
t a ~ d e m L1 sequences in the same orientation, both
around 6000 bp in length. These human and rabbit
L1 sequences are quite similar and their lengths
make them highly visible in similarity compu-
tat.ions. In all, eight L1 sequences have been cited in
the human cluster and five in the rabbit cluster, but
because of their reduced length and/or reversed
orientation, the other published L1 sequences do
not affect the results discussed below. Very recently,
another piece of an L1 sequence has been discovered
in the rabbit cluster (Huang et al., 1990).

Evolution theory suggests that an ancestral gene
cluster arranged as 5’-c-y-q-&/l-3’ may have existed
before the mammalian radiation. Consistent with
this hypothesis, there are inter-gene similarities
within the #? clusters. For example, there is a region

between human E and ‘y t,hat is similar to a region
between rabbit E and y.

We applied a variant of the BLAST program to
these two sequences, with match score 5, mismatch
score -4 and, initially, w = 12. The program found
98 alignments scoring over 200, with 1301 being the
highest score. Of the 57 alignments scoring over 350,
45 paired genes (with each of the 24 possible gene
pairs represented) and the remaining 12 involved L1
sequences. Below 350, inter-gene similarities (as
described above) appear, along with additional
alignments of genes and of L1 sequences. Two align-
ments with -scores between. 200 and 350 do n8t fit
the anticipated pattern. One reveals the newly dis-
covered section of L1 sequence. The other aligns a
region immediately 5’ from the human f l gene with a
region just 5‘ from rabbit 6. This last alignment
may be the result of an intrachromosomal gene
conversion between 6 and J in the rabbit genome
(Hardison & Margot, 1984).

With smaller values of 20, more alignments are
found. In particular, with w = 8, an additional 32
alignments ale found with a score above 200. Ail of
these fall in one of the three classes discussed above.
Thus, use of a smaller w prorides no essentially new
information. The dependence of various values on u7
is given in Table 4. Time is measured in seconds on
a SUN4 for a simple variant of BLAST that works
with uncompressed DNA sequences.

Table 4
Tb time and sensitivity of BLAST on

D N A sqwnces as a fumtion of w

W Time Words Hits hlatches

8 159 44,587 118,941 130
9

10
6.8 44,586
4.3 44,585

39.2 18 123
15.3’1 114

11 3 5 44.5& 7345 106
12 3.2 44.583 4197 9s

~~ ~

S. - F . A

4. Conclusion

.The concept underlying BLAST is simple and
robust and therefore can be implemented in a
number of ways and utilized in a variety of
contexts. As mentioned above, one variation is to
allow for gaps in the extension step. For the applica-
tions we have had in mind, the tradeoff in speed
proved unacceptable, but this may not be true for
ather applications. We have implemented a shared
memory version of BLAST that loads the
compressed DNA file into memory once, allowing
subsequent searches to skip this step. We are imple-
menting a similar algorithm for.comparing a DNA
sequence to the protein database, allowing trans-
lation in all six reading frames. This permits the
detection of distant protein homologies even in the
face of common DNA sequencing errors (replace-
ments and frame shifts). C. B. Lawrence (personal
communication) has fashioned score matrices
derived from consensus pattern matching methods
(Smith & Smith, 1990), and different from the
PAX-120 matrix used here, which can greatly
decrease the time of database searches for sequence
motifs.

The BLAST approach permits the construction of
extremely fast programs for database searching that
have the further advantage of amenability to
mathema_tical analysis. Variations of the basic idea
as well as alternative implementations, such as
those described above, can adapt the method for
different contexts. Given the increasing size of
sequence databases, BLAST can be a valuable tool
for the molecular biologist. A rersion of BLAST in
the C programming language is available from the
authors upon request (write to W. Gish); it runs
under both 4 2 BSD and the AT&T System V
UNIX operating systems.

W.M. is supported in part by SKH grant LMOS110, and
E.W.Y. is supported in part by hXH grant LM04960.

References
Coulson, A. F. W., Collins, J. F. & Lyall, A. (1987).

Comput. J . 30,420424.

iltschul e t ai.

Dayhoff, >I. 0. (1978). Editor of - 4 t h of Profrin Sequence
and Structure, vol. 3, mppl. 3, S a t . Biomed. Res.
Found., Washington. DC.

Dayhoff, 31. O., Schwartz, R. 31. & Orcutt. E. C. (1975).
In Allas of Protein Seqwnr~ and Stmture (Dayhoff,
SI. 0.. ed.), vol. 5, mppL 3, pp. 34.5-352, Kat.
Biomed. Res. Found., K’ajhington, D C .

Dembo, X. & Karlin, S. (1991). Ann. Prob. in the press.
Goad, W. B. & Kanehisa, 31. I. (1952). ~Vucl. Acid3 Rea. .

Gotoh, 0. & Tagashira, I-. (1986). S u c I . d c & Rea. 14,

Hardison, R. C. & Margot, J . B. (19&). Nd. Bid. Evol. 1,

Hopcroft, J. E. & Ullman. J. D. (1979). In Inlrductim to ’

10, 245-263.

57-64.

302-316.

Avtomotd . T h e w , Lanpqea. and Compdatim;
pp. 4245, Addison-We&?, Reading, MA:

Huang, X.. Hardison, R. C. h 3liller. W. (1990). Compul.
A w l . Bwsci. In the p m

Karlin, S. & Altschul, S. F. (1990). Proc. Xat. d c a d . Sci.,

Karlin, S., Dembo, A. & Kaaabata, T. (1990). dnn. Stat.

Lipman,’ D. J. & Pearson. K. R. (1985). SciclLGe, 227,

3Iargot. J. B., Demers, G . K. & Hardison, R. C. (1989).

Mealy, G. H. (1955). Bell Spim Te+ J . 34, lO.i?~-1079.
Xeedleman, S. B. & Wunsch. C. D. (1950). J . Yol. Biol.

U.S.B. 87, 2264-2268.

18, 571-581.

1435-1441.

J . Y o l . Biol. 205, l a .

48, 443453.
Pearson, W. R. & Lipman. D. J. (1988). PTCC. Xaf. Acad.

Sci.,.U.S.A. 85, 244-2U8.
Sankoff, D. & Kruskal, J. B. (1983) Time”Tlirp, String

Edits and MacromolecuLcr.- The Theory and Practice of
Sequence Comparimn. Addison-Wesley. Reading,
MA.

Sellers, P. H. (1974). SIdV d . dppl. Math. 2 6 . T87-793.
Sellers, P. H. (1984). Bull. H d h . Bid. 46,501-514.
Smith, R. F. & Smith, T. F. (1990). PTOC. Jut- d m d . Sci., %$

USA. 87, 118-122. ‘9 - r‘.

Smith, T. F. & Waterman, 3f. S. (1981). Adran. Appl. ;$$
>lath. 2, 482489.

Uzzell, T. & Corbin. K. ‘X. (1951). Science, 172,
1089-1096. -.?

Waterman, M. S. (19%). B d . Y d h . Biol. 46. 4773-500. -%.
. .

Edited by S. Brenner

