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ATAC-seq, the assay for transposase-accessible chromatin using sequencing,
is a quick and efficient approach to investigating the chromatin accessibility
landscape. Investigating chromatin accessibility has broad utility for answer-
ing many biological questions, such as mapping nucleosomes, identifying
transcription factor binding sites, and measuring differential activity of DNA
regulatory elements. Because the ATAC-seq protocol is both simple and
relatively inexpensive, there has been a rapid increase in the availability of
chromatin accessibility data. Furthermore, advances in ATAC-seq protocols
are rapidly extending its breadth to additional experimental conditions, cell
types, and species. Accompanying the increase in data, there has also been an
explosion of new tools and analytical approaches for analyzing it. Here, we
explain the fundamentals of ATAC-seq data processing, summarize common
analysis approaches, and review computational tools to provide recommenda-
tions for different research questions. This primer provides a starting point and
a reference for analysis of ATAC-seq data. © 2020 Wiley Periodicals LLC.
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INTRODUCTION
As our understanding of gene regulation

has improved, so has our awareness of the
increasingly complex chromatin landscape
that governs that regulation. Assays to better
evaluate this landscape have been rapidly
developed and improved, and the Assay
for Transpose Accessible Chromatin using
sequencing (ATAC-seq) has become a com-
mon first step for studying gene regulation.
ATAC-seq interrogates chromatin openness,
or chromatin accessibility, similar to earlier
assays such as DNase-seq, MNase-seq, or
FAIRE-seq (Nordström et al., 2019; Sheffield
& Furey, 2012). These assays identify DNA
regions that are accessible to external factors,
which have been shown to correspond to

regulatory elements, including promoters, en-
hancers, and other types of elements (Klemm,
Shipony, & Greenleaf, 2019; Pálfy, Schulze,
Valen, & Vastenhouw, 2020; Sheffield et al.,
2013; Song et al., 2011; Thurman et al.,
2012). Activity of regulatory elements varies
spatially, temporally, and among cell types to
influence the binding of transcription factors
and the expression of target genes (Sheffield
et al., 2013; Song et al., 2011). Studying
the activity of regulatory elements promises
to not only increase understanding of the
fundamental biology of gene regulation, but
also its influence on human health and disease
(Chan et al., 2018; Corces et al., 2016; Corces,
et al., 2018; Hatzi et al., 2019; Lara-Astiaso
et al., 2014; Polak et al., 2015; Spivakov &
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Figure 1 (A) Increasing prevalence of ‘ATAC-seq’ DataSets in the Gene Expression Omnibus (GEO). Color =
species; gray line = fitted exponential growth model. (B) Generalized ATAC-seq library preparation protocol.

Fraser, 2016; Tewari et al., 2012; Wang et al.,
2018).

ATAC-seq has been adopted rapidly in the
scientific community, with the number of stud-
ies using ATAC-seq approaching 10,000 in
just a few years (Fig. 1A). The primary factor
driving this adoption is efficiency, as ATAC-
seq has dramatically improved the efficiency
in cost, time, and required amount of sample
over previous similar assays (Buenrostro,

Giresi, Zaba, Chang, & Greenleaf, 2013).
ATAC-seq relies on the activity of a hyper-
active Tn5 transposase (Buenrostro et al.,
2013; Reznikoff, 2008). This transposase
is leveraged, through a process known as
tagmentation (Adey et al., 2010), to simulta-
neously fragment the genome while inserting
sequencing adapters (Buenrostro et al., 2013).
These sequences can be PCR amplified and
then sequenced using 2-4 orders of magnitude

Smith and
Sheffield

2 of 18

Current Protocols in Human Genetics



Figure 2 ATAC-seq general workflow. Raw reads are processed through a series of steps to pro-
duce uniform intermediate results, which can then be further analyzed with more specific analyses
relevant to a biological research question.

fewer cells, fewer protocol steps, and less time
than analogous assays (Fig. 1B; Buenrostro
et al., 2013; Chang, Gohain, Yen, & Chen,
2018). Protocols for ATAC-seq have improved
since it was first introduced in 2013 (Buen-
rostro et al., 2013; Buenrostro, Wu, Chang, &
Greenleaf, 2015), for example, with improved
removal of contaminating mitochondrial DNA
(Corces et al., 2017; Montefiori et al., 2017)
and extension to single cells (Buenrostro,
Wu, & Litzenburger, et al., 2015; Cusanovich
et al., 2015; Cusanovich et al., 2018). As
the protocol has developed and increased in
popularity, analytical approaches have also
been multiplying rapidly. Here, we provide
guidance for both novice and experienced
analysts on the advantages and limitations of
ATAC-seq analysis pipelines, methods, and
tools.

FUNDAMENTALS OF ATAC-SEQ
DATA ANALYSIS

A typical ATAC-seq analysis can be di-
vided into two major components: (1) general
processing of raw sequencing reads, which
produces intermediate outputs like annotated
peak calls; and (2) detailed downstream
analysis, which is more specific to a partic-
ular biological question (Fig. 2). In general,
the first step is universal to all downstream
analysis types, whereas the second step then
requires more specialized software.

Alignment, Adapters, and
Mitochondrial Reads

Analysis of ATAC data typically starts by
processing raw sequences through a series of
pipeline steps into outputs relevant to detailed
biological questions (Fig. 2). A generalized
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workflow includes the following: first, reads
are screened for quality, then adapter se-
quences are removed, and finally the reads
are aligned to a reference assembly. After
alignment, many pipelines are equipped to
handle high mitochondrial DNA content,
because ATAC-seq libraries are prone to
high levels of mitochondrial DNA, which
is typically considered undesirable. While
recent protocol adaptations have succeeded in
reducing mitochondrial DNA using optimized
reagents (Corces et al., 2017; Rickner, Niu, &
Cheng, 2019) or molecular biology techniques
(Montefiori et al., 2017), many pipelines ad-
dress this computationally by filtering out
mitochondrial sequences. These sequences
are removed through sequential alignments
to mitochondrial DNA before genomic DNA,
through removal of mitochondrial DNA from
genome-wide genomic indices, or through
blacklists of mitochondrial DNA after align-
ment. In our work, sequential alignment
is the most accurate and computationally
efficient way to eliminate mitochondrial
contaminants–and also allows for later analy-
sis of mitochondrial reads (Smith et al., 2020).

Removing Duplicates
Following adapter removal and alignment,

pipelines remove read duplicates, although
typical computational strategies may be
overzealous in this approach if using only
single-end sequencing data, since there is
only a single end to compare. Single-end
sequencing also provides less information,
as it reduces the ability to identify PCR du-
plicates, which are typically removed. It also
eliminates the ability to determine fragment
lengths and whether identified fragments
are therefore subnucleosomal or nucleoso-
mal, which are important considerations if
nucleosome positioning is of interest to the
analyst. For these reasons, it is recommended
to use paired-end ATAC-seq data when pos-
sible. After alignment and duplicate removal,
low-quality, multi-mapping, or unmapped
paired reads also typically get removed from
downstream analyses.

Generating Signal Tracks
Once reads are aligned and filtered, they

are shifted to accommodate the mechanics of
transposase Tn5 activity (Adey et al., 2010;
Buenrostro et al., 2013; Reznikoff, 2008).
When the Tn5 transposase interacts with
DNA, it effectively occupies about 9 bp of
DNA and introduces the sequencing adapter
at the 5′ end of the interaction site. The Tn5

adapters are inserted in a staggered manner
into the 5′ ends of target sequence strands
with a 9-bp gap between them (Adey et al.,
2010; Buenrostro et al., 2013; Reznikoff,
2008). This means that the center of the Tn5
binding is actually 4 bp to the right of the
edge on positive-strand reads, or 5 bp to the
left on negative-strand reads. This shifting is
intended to identify the center of the locus
where Tn5 interaction occurred. An alterna-
tive approach is to account for the 9-bp size
of the transposase binding event by mapping
the reads as 9-bp insertion events instead of at
nucleotide resolution. In either case, mapped
reads are then transformed into signal tracks
for visualization and further data analysis.

Peak Calling
As the goal of ATAC-seq is the identifi-

cation of regions of accessible chromatin,
and, by proxy, regulatory elements and sites
of transcription factor binding, we must next
identify those regions of interest. To do this,
we identify areas of the genome that are
enriched for aligned reads. These regions are
identified and visualized as peaks. Calling
peaks therefore represents the identification
of regions of concentrated ATAC-seq signal
that indicate regions of open chromatin. Peak
calling necessitates choosing an appropriate
peak-calling algorithm or tool that balances
sensitivity and specificity of called peaks.
User-defined settings can widely influence the
number, width, and confidence of identified
peaks (Bailey et al., 2013). Following the iden-
tification of peaks, they are typically broadly
annotated into genomic partitions including
known features such as promoters, exons,
introns, or 3′ and 5′ UTR, among others.

Peak calling is typically the end of the gen-
eral data processing pipeline that considers
each sample independently. With signal tracks
and called peaks for each sample, analysts are
prepared for downstream analyses using more
specialized analysis approaches that depend
on specific user-defined biological questions.

Downstream Analysis
For detailed downstream analysis, the data

is generally integrated across samples. These
analyses include differential accessibility
analysis, motif analysis, footprinting, and
peak and region enrichment analysis. Because
these analyses are more specific to particular
biological questions, they are not typically
performed by general-purpose ATAC-seq
pipelines and must be manually performed
for each study. Therefore, only a subset of
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Table 1. Step by Step Guides to Performing ATAC-seq Data Analysis

Title and author Notes and link

ATAC-seq data analysis: from FASTQ to
peaks

Blog style walkthrough of generalized ATAC-seq data analysis.

Yiwei Niu

Last updated: 2019 https://yiweiniu.github.io/blog/2019/03/ATAC-seq-data-analysis-from-
FASTQ-to-peaks/

BIOINF525 Lab 3.2 Minimal standard ATAC-seq analysis walkthrough.

Steve Parker

Last updated: 2016 https://github.com/ParkerLab/

Analysis of ATAC-seq data in R and
Bioconductor

Bioconductor ATAC-seq analysis course.

Rockefeller Bioinformatics Resource

Last updated: 2018 https:// rockefelleruniversity.github.io/RU_ATACseq/

ATAC-seq Generalized ATAC-seq analysis walkthrough with included custom scripts.

John M. Gaspar

Last updated: 2019 https://github.com/harvardinformatics/ATAC-seq

ATAC-seq data analysis Galaxy training walkthrough of generalized ATAC-seq analysis.

Delisle L; Doyle M; & Heyl F

Last updated: 2020 https://galaxyproject.github.io/ training-material/ topics/
epigenetics/ tutorials/atac-seq/ tutorial.html

these analyses will be relevant for a particular
analysis, which should be determined before
investing significant effort in a particular tool.
We describe these analysis types in more
detail in the next section.

SURVEY OF TOOLS FOR
ATAC-SEQ ANALYSIS

Here, we present a survey of tools divided
into classes based on their primary goal. This
includes four classes geared toward gen-
eral ATAC-seq data processing: step-by-step
analysis guides, raw sequence pipelines and
workflows, quality control, and peak calling
tools. The remaining tools are for more de-
tailed downstream analyses, which we divide
into five additional categories: differential ac-
cessibility, motif enrichment and footprinting,
nucleosome positioning, region enrichment,
and single-cell analysis. The advantages and
disadvantages of the tools vary widely, and
some are targeted for novices while others
require an experienced analyst. Our survey
provides an overview of each analysis type,
along with a table of some characteristics of
relevant tools, such as mode of operation,
language, and update frequency, along with a
link to more information.

Step-by-Step Analysis Guides
For users who would prefer following a

manual, stepwise procedure, several tutorials
are available to walk a user through ATAC-seq
data analysis (Table 1). These guides are a
great starting point for an inexperienced user,
as they explain how each step is manipulating
raw data toward the goal of called peaks and
further analyses. Users are required only to
be able to work at the command line and have
experience installing prerequisites. Examples
include either formal classes available pub-
licly (Steve Parker, Rockefeller University),
training guides from public platforms (Delisle,
Doyle, & Heyl, 2020), or guides from individ-
ual researchers sharing their own experiences
(e.g., Yiwei Niu and John M. Gaspar). These
step-by-step guides are primarily educational
tools and are not intended to be automatic,
re-usable pipelines that can be easily deployed
on many samples across multiple projects; for
this application, users will be more interested
in the reusable pipelines described next.

Raw Sequence Pipelines and
Workflows

A more common need is a standardized
pipeline to process raw data through fastq
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processing, alignment, peak calling, and
signal track generation (Fig. 2). A number of
raw data processing pipelines are available
(Table 2). Many comprehensive pipelines now
exist, with different target audiences. Some
pipelines are geared toward the bench biolo-
gist, with graphical user interfaces (GUIs), in-
cluding both open-source (I-ATAC, GUAVA)
and commercial options (Basepair). While the
GUI may simplify things for some users, these
tools tend to have less documentation and also
give less power to the user. The majority of
raw data processing pipelines are executable
at a command-line interface (CLI). Among
these pipelines, there is a wide range of pos-
sible pipeline end-points. Some pipelines are
geared toward doing only universal analy-
sis, ending at annotated peaks to provide a
starting point for more detailed downstream
analysis. Other pipelines include substantial
cross-sample analysis after peak calling. To
delineate this distinction, we have catego-
rized pipelines into two groups: entry-point
pipelines provide a series of outputs intended
as the beginning of a user-controlled down-
stream analysis, while end-point pipelines
are intended as a complete analysis, running
integrated analysis internally.

Entry-point pipelines (AIAP, ENCODE,
PEPATAC) are generally robust and repro-
ducible, yielding consistent processing of
few to many samples. This goal necessarily
excludes some downstream steps–to improve
efficiency and because not all researchers
may wish to do all analyses all the time. This
is particularly important if those additional
procedures are not specific to the biological
question being investigated. In that case, those
additional procedures come at the increased
cost of time and computational resources. All
three of the entry-point pipelines include some
level of shared and novel quality-control met-
rics to identify quality libraries with minimal
project-specific analyses included.

The majority of the pipelines are end-point
oriented, with substantial downstream pro-
cessing following peak calling and signal
track generation. The advantage of end-point
pipelines is that they require the least addi-
tional effort for a complete analysis. These
pipelines typically include the ability to incor-
porate sample structure (case versus control)
for differential analysis of accessible regions,
transcription factor binding sites, or motifs.
However, the cost of this convenience is a lack
of customizability, as the exact downstream
analysis may or may not match the require-
ments of a particular study, and the exact

settings and assumptions must be considered.
Furthermore, the increased complexity of
pipelines that include numerous downstream
analyses may waste analysis time and compu-
tational resources if that analysis is irrelevant
for the question under investigation.

Quality Control
Raw data processing pipelines have nearly

universally adopted several standard quality
control (QC) metrics. Briefly, these include
QC of the raw and aligned sequence data, the
distribution of aligned sequence fragments
to confirm the presence of nucleosomes,
measures of library complexity, the fraction
of reads in peaks (FRiP), and the enrichment
of reads at transcription start sites (TSS).
Quality-control tools are dedicated tools
that provide these and more advanced QC
metrics (Table 3). Advanced metrics include
the enrichment of promoter signal relative
to gene body, measures of the proportion
of nucleosome-free reads, and measures of
signal to noise.

Peak Calling
Comprehensive ATAC-seq pipelines typi-

cally employ one of just a few widely adopted
peak callers, which include tools originally
developed for ChIP-seq or DNase-seq ex-
periments, such as F-Seq (Boyle, Guinney,
Crawford, & Furey, 2008), MACS (Zhang
et al., 2008), or PeaKDEck (McCarthy &
O’Callaghan, 2014). There are also other
options built specifically for ATAC-seq data,
including Genrich (Gaspar, 2018) and HMM-
RATAC (Tarbell & Liu, 2019; Table 4). The
widely employed peak callers developed for
ChIP-seq and DNase-seq experiments offer
the advantage of years of demonstrated utility,
support, and understanding of their strengths
and weaknesses, but may neglect features
of ATAC-seq data such as nucleosome po-
sitioning and transposase biases. Because
ATAC-seq seeks to identify regions of open
chromatin, the peak-calling step is critical,
so there will likely continue to be effort ded-
icated to improving peak-calling tools and
leveraging ATAC-specific data features to
improve accuracy.

Differential Accessibility
ATAC-seq peaks correspond to regions of

open chromatin, which have been shown to
identify regulatory regions. One of the most
common analyses is to identify differentially
accessible regions. Analagous to identi-
fying differential expression between two
sample types, differential accessibility can
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Table 2. Raw ATAC-seq Data Processing Pipelines

Language Notes Docs Citation

AIAP Bash; R;
Python

Optimized analysis with novel QC
metrics

++ Liu et al. (2019)

Last updated: 2019

ATAC2GRN Bash; Python Parameter optimized ATAC-seq
pipeline

+ Pranzatelli, Michael, &
Chiorini (2018)

Last updated: 2018

ATAC-pipe Python; R Analysis pipeline for ATAC-seq data
including TF footprinting; cell-type
classification; and regulatory network
creation

+++ Zuo et al. (2019)

Last updated: 2019

ATACProc Bash; Python;
R

Complete pipeline with additional
downstream analyses included

++ Unpublished

Last updated: 2019

Basepair NA Commercial. Web-based GUI for
complete analysis

? Unpublished

CIPHER R; Perl;
Python

A data processing platform for
ChIP-seq; RNA-seq; MNase-seq;
DNase-seq; ATAC-seq; and GRO-seq
datasets

+ Guzman & D’Orso (2017)

Last updated: 2017

ENCODE Python; Bash Complete pipeline following
ENCODE standards for
ATAC/DNase-seq analysis

++ Unpublished

Last updated: 2020

esATAC R Complete pipeline including
downstream analyses

+++ Wei, Zhang, Fang, Li, &
Wang (2018)

Last updated: 2019

GUAVA Java; Python;
R

GUI based complete ATAC-seq
pipeline

+ Divate & Cheung (2018)

Last updated: 2019

I-ATAC Java GUI based interactive ATAC-seq
pipeline

+ Ahmed & Ucar (2017)

Last updated: 2017

nfcore/atacseq Python; R Complete pipeline build using
Nextflow

+++ Ewels et al. (2019)

Last updated: 2019

PEPATAC Python; R;
Perl

Complete pipeline with unique
analytical approaches and QC metrics

+++ Unpublished

Last updated: 2019

pyflow-ATAC-
seq

Bash; Python ATAC-seq snakemake pipeline with
included nucleosome positioning and
TF footprinting

++ Unpublished

Last updated: 2020

snakePipes
ATAC-seq

Python Workflow system including ATAC-seq
analysis

+++ Bhardwajet al. (2019)

Last updated: 2019

Tobias Rausch Bash; R;
Python

Complete pipeline with emphasis on
downstream analyses

++ Rausch et al. (2019)

Last updated: 2020
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Table 3. ATAC-seq Advanced Quality Control Metric Tools

Languages Notes Docs Citation

ATAqC Bash; Python Generate ATAC-seq specific
quality control metrics.

+ Unpublished

Last updated: 2017

ATACseqQC R Provides ATAC-seq specific
quality control metrics and
transcription factor footprinting.

+++ Ou et al. (2018)

Last updated: 2018

ataqv C++; Bash ATAC-seq QC and visualization. +++ Orchard, Kyono, Hensley,
Kitzman, & Parker (2020)

Last updated: 2020

Table 4. Peak Calling Tools

Languages Notes Docs Citation

F-Seq Java Can be used as general peak caller to
identify regions of open chromatin.

++ Boyle et al. (2008)

Last updated: 2016

Genrich C Peak caller for genomic enrichment
assays with specific ATAC-seq mode.

+++ unpublished

Last updated: 2020

HMMRATAC Java Identify nucleosome positioning and
leverage ATAC-seq specific read outs to
call peaks.

+++ Tarbell & Liu (2019)

Last updated: 2020

Hotspot2 C++ Identify significantly enriched genomic
regions.

++ Unpublished

Last updated: 2019

HOMER Perl; C++ Suite of tools that include the ability to
call peaks from DNA enrichment assays.

+++ Heinz et al. (2010)

Last updated: 2010

MACS2 Python Specifically designed for CHiP-seq but
broadly applicable to any DNA
enrichment assay to call peaks.

+++ Zhang et al. (2020)

Last updated: 2020

PeaKDEck Perl Peak calling program for DNase-seq data. +++ McCarthy &
O’Callaghan (2014)

Last updated: 2014

demonstrate how gene regulation is governed
in different biological settings. Typically,
differential regions are identified by counting
sequencing reads in individual peaks and
then using mainstream count-based statisti-
cal tests to assess for statistical differences.
Most analysis uses popular R packages for
count-based data, such as edgeR (McCarthy,
Chen, & Smyth, 2012; Robinson, McCarthy,
& Smyth, 2010), DESeq2 (Love, Huber, &
Anders, 2014), or DiffBind (Stark & Brown,
2011). While designed for other data types,
e.g., RNA-seq, because ATAC-seq data is
count-based, the statistical assumptions are
often transferable.

After identifying differentially accessible
regions, we typically want to better understand
what factors are acting at these regions. A
common follow-up is to identify which tran-
scription factors are also differentially active
between scenarios (Table 5). To accomplish
this, there are at least two tools optimized to
work with ATAC-seq data to identify differ-
ential transcription factor activity. By incor-
porating chromatin accessibility information
and reported transcription factor binding sites,
it becomes possible to identify differential TF
activity (DAStk, Tripodi, Allen, & Dowell,
2018; diffTF, Berest et al., 2019). Should
an experiment also include corresponding
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Table 5. Tools to Investigate Differentially Accessible Regions

Languages Notes Docs Citation

DAStk Python Identifies changes in transcription factor
activity by looking at changes in chromatin
accessibility

+++ Tripodi et al. (2018)

Last updated: 2020

diffTF Python; R Identifies differential transcription factors.
Can operate in basic mode with just
chromatin accessibility or in classification
mode where it integrates RNA-seq.

+++ Berest et al. (2019)

Last updated: 2020

Table 6. Motif Enrichment and Transcription Factor Footprinting Tools

Languages Notes Docs Citation

BiFET R Identify overrepresented transcription
factor footprints.

++ Youn et al. (2019)

Last updated: 2019

BinDNase R Transcription factor binding prediction
using DNase-seq.

+ Kahara & Lahdesmaki
(2015)

Last updated: 2015

CENTIPEDE R Transcription factor footprinting and
binding site prediction.

++ Pique-Regi et al. (2011)

Last updated: 2010

DeFCoM Python Detecting transcription factor footprints
and underlying motifs using supervised
learning.

+++ Quach & Furey (2017)

Last updated: 2017

DNase2TF R Identify footprint candidates from
DNase-seq data on user-specified regions.

+ Sung et al. (2014)

Last updated: 2017

HINT-ATAC Python Use open chromatin data to identify
transcription factor footprints with
modifications specific to ATAC-seq data.

+++ Li et al. (2019)

Last updated: 2019

HOMER Perl; C++ A suite of tools for motif discovery and
enrichment.

+++ Heinz et al. (2010)

Last updated: 2019

MEME Suite Perl; Python Suite of tools for motif discovery;
enrichment; and GO term analyses.

+++ Bailey et al. (2009)

Last updated: 2020

PIQ Bash; R Models genome-wide DNase profiles to
identify transcription factor binding sites.

++ Sherwood et al. (2014)

Last updated: 2016

TOBIAS Python Identify transcription factor footprints. ++ Bentsen et al. (2019)

Last updated: 2020

TRACE Python Transcription factor footprinting. ++ Ouyang & Boyle (2019)

Last updated: 2020

Wellington Python Identify TF footprints using DNase-seq
data.

+++ Piper et al. (2013)

Last updated: 2019
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Table 7. Tools to Investigate Nucleosome Positioning

Languages Notes Docs Citation

HMMRATAC Java Identify nucleosome positioning
and leverage ATAC-seq specific
read outs to call peaks.

+++ Tarbell & Liu (2019)

Last updated: 2020

NucleoATAC Python; R Call nucleosomes using
ATAC-seq data.

+++ Schep et al. (2015)

Last updated: 2019

NucTools Perl; R Calculate nucleosome
occupancy profiles on chromatin
accessibility data.

+++ Vainshtein et al. (2017)

Last updated: 2019

Table 8. Tools to Investigate Region Enrichement

Languages Notes Docs Citation

Annotatr R Annotate summarize and
visualize genomic regions.

+++ Cavalcante & Sartor (2017)

Last updated: 2019

BART/BARTweb Python Predict factors that bind at
cis-regulatory regions.

+++ Wang et al. (2018)

Last updated: 2020

chipenrich R Perform gene set enrichment
testing using genomic regions.

+++ Welch et al. (2014)

Last updated: 2020

coloc-stats Python Perform co-localization analysis
of genomic regions.

+++ Simovski et al. (2018)

Last updated: 2019

COLO JSP Identify genomic features in
close proximity to
user-submitted genomic regions.

++ Kim et al. (2015)

Last updated: 2015

FEATnotator Perl; R Annotate genomic regions. ++ Podicheti & Mockaitis (2015)

Last updated: 2018

GenomeRunner .NET Perform annotation and
enrichment of genomic regions
against default or custom
regulatory regions.

++ Dozmorov et al. (2016)

Last updated: 2016

GenometriCorr R Determine spatial correlation
between region sets.

++ Favorov et al. (2012)

Last updated: 2020

Genomic
Association
Tester

Python Calculate the significance of
overlaps between multiple
genomic region sets.

+++ Heger et al. (2013)

Last updated: 2019

GIGGLE C Genomics search engine to
uncover significantly shared
genomic loci (regions) between
data.

+++ Layer et al. (2018)

Last updated: 2019

(Continued)

10 of 18

Current Protocols in Human Genetics



Table 8. Tools to Investigate Region Enrichement, continued

Languages Notes Docs Citation

GLANET Java; Perl Genomic loci annotation and
enrichment tool between sets of
genomic regions.

+++ Otlu et al. (2017)

Last updated: 2019

GREAT C Annotate genomic regions. +++ McLean et al. (2010)

Last updated: 2019

LOLA/LOLAweb R Determine significant
enrichment between region sets
to inform on biological meaning.

+++ Sheffield & Bock (2016)

Last updated: 2019

regioneR R Evaluate significant associations
between region sets using
permutation testing.

+++ Gel et al. (2016)

Last updated: 2020

StereoGene C++; R Estimate genome-wide
correlation between pairs of
genomic features.

++ Stavrovskaya et al. (2017)

Last updated: 2019

gene expression information, it is possible
to then classify differential transcription fac-
tors as activators or repressors (Berest et al.,
2019).

Motif Enrichment and TF
Footprinting

Another common analysis of differentially
accessible regions is de novo motif analysis,
which entails looking for an overrepresenta-
tion of transcription factor motifs in regions
of interest relative to some background set.
Motif discovery is typically used in analysis of
ChIP-seq data, but is also relevant for acces-
sible chromatin peaks with some specificity,
such as for a particular cell type or treatment.
Motif discovery has been an ongoing field of
study for decades, and there are many tools to
identify enriched motifs (Bailey et al., 2009;
Berest et al., 2019; Galas & Schmitz, 1978;
Heinz et al., 2010; Tripodi et al., 2018). Tools
initially designed for ChIP-seq or DNase-seq
experiments have been widely applied to
ATAC-seq data as well (MEME Suite, Bailey
et al., 2009; HOMER, Heinz et al., 2010).
There are now dozens or hundreds of individ-
ual motif-finding tools (Hashim, Mabrouk, &
Al-Atabany, 2019).

A related approach called footprinting
explores the microarchitecture of reads
within peaks to identify physical evidence of
bound transcription factors that decrease the
accessibility at small binding sites (typically
under 20 bp) within an overall area of higher

accessibility (Table 6; Vierstra & Stamatoy-
annopoulos, 2016). Following the introduction
and rapid adoption of DNase-seq, the number
of tools to perform TF footprinting rapidly
expanded. A number of these were designed
for DNase-seq, but have often been employed
using ATAC-seq data successfully (CEN-
TIPEDE, Pique-Regi et al., 2011; PIQ, Sher-
wood et al., 2014; DNase2TF, Sung, Guertin,
Baek, & Hager, 2014; BinDNase, Kähärä
& Lähdesmäki, 2015; Wellington, Piper
et al., 2013; Piper, Elze, et al., 2013; TRACE,
Ouyang & Boyle, 2019). One advantage of us-
ing tools designed for DNase-seq simply lies
in their demonstrated utility, even when ap-
plied to ATAC-seq data. Yet, there are unique
features of ATAC-seq data including nucleo-
some positioning information and transposase
cleavage biases that can be used to inform on
TF footprinting. Research has shown that bi-
ases and transcription factor dynamics must be
carefully considered when interpreting results
of footprinting analysis, whether from DNase-
seq or ATAC-seq assays (Calviello et al.,
2019; Martins, Walavalkar, Anderson, Zang,
& Guertin, 2017; Sung, Baek, & Hager, 2016).
Newer tools either have specific settings to
work with ATAC-seq data, or were designed
specifically for ATAC-seq and may be more
appropriate going forward (DeFCoM, Quach
& Furey, 2017; TOBIAS, Bentsen et al., 2019;
HINT-ATAC, Li, Schulz, et al., 2019; BiFET,
Youn, Marquez, Lawlor, Stitzel, & Ucar,
2019).
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Table 9 Available Tools for Single-Cell ATAC-seq Data Processing

Languages Notes Docs Citation

BAP R; Python Bead-based scATAC-seq
data processing.

++ Lareau et al. (2019)

Last updated: 2019

BROCKMAN R; Bash; Ruby Convert genomics data into
K-mer words associated
with chromatin marks used
to compare and identify
changes across samples.

++ de Boer & Regev (2018)

Last updated: 2018

Cell Ranger
ATAC

NA Commercial. Set of analysis
pipelines for Chromium
single cell ATAC-seq.

+++ Unpublished

chromVAR R Identify transcription factor
accessibility in single-cell
data. Enables clustering of
single-cell ATAC-seq data.

+++ Schep et al. (2017)

Last updated: 2019

Cicero R Predict cis-regulatory DNA
interactions using
single-cell chromatin
accessibility data.

+++ Pliner et al. (2018)

Last updated: 2019

cisTopic R Identify cell states and
cis-regulatory topics from
single-cell data.

+++ Bravo Gonzalez-Blas
et al.(2019)

Last updated: 2019

scABC R Classify single-cell ATAC
using unsupervised
clustering and identify
chromatin regions specific
to cell identity.

+ Zamanighomi et al. (2018)

Last updated: 2019

SCALE Python Clustering and visualization
of single-cell ATAC-seq
data into interpretable cell
populations.

++ Xiong et al. (2019)

Last updated: 2019

Scasat Bash; Python;
R

Complete pipeline to
process scATAC-seq data
with simple steps.

+++ Baker et al. (2019)

Last updated: 2019

scATAC-pro R; Python Comprehensive pipeline for
single cell ATAC-seq
analysis.

+++ Yu et al. (2019)

Last updated: 2020

scOpen Python Chromatin-accessibility
estimation of single-cell
ATAC data.

+ Li et al. (2019)

Last updated: 2020

(Continued)
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Table 9 Available Tools for Single-Cell ATAC-seq Data Processing, continued

Languages Notes Docs Citation

SCRAT R Useful for studying single
cell heterogeneity. Can
identify changes in gene
sets or transcription factor
binding sites. Includes GUI
and web-based service.

+++ Ji et al. (2017)

Last updated: 2018

SnapATAC R; Python Single Nucleus Analysis
Pipeline for ATAC-seq.

+++ Fang et al. (2019)

Last updated: 2019

Nucleosome Positioning
Nucleosome positioning is crucial in a

number of DNA regulatory processes, partic-
ularly gene expression, and may be directly
interrogated using ATAC-seq data (Radman-
Livaja & Rando, 2010; Schep et al., 2015;
Struhl & Segal, 2013). ATAC-seq is designed
to assay regions of open chromatin–in other
words, to identify regions not currently pack-
aged into nucleosomes. As a consequence of
this, sequenced fragment lengths and align-
ments occur in structured patterns that inform
on the presence and positioning of nucleo-
somes (Table 7). Essentially, short ATAC-seq
fragments represent nucleosome-free regions,
and longer fragments represent nucleosome-
associated DNA (Buenrostro et al., 2013).
The earliest tool, NucleoATAC (Schep et al.,
2015) reports the position and occupancy of
nucleosomes. Building on the fact that this in-
formation is inherent in ATAC-seq data, later
tools have extended the biological information
that can be obtained from a more thorough
understanding of nucleosome positioning.
The use of nucleosome positioning informa-
tion may now be easily compared between
sample conditions, which ultimately allows
for concurrent identification of transcription
factor binding sites alongside additional epi-
genetic marks (NucTools, Vainshtein, Rippe,
& Teif, 2017). Furthermore, this information
may be leveraged to improve peak calling
by incorporating nucleosome positioning
and enrichment to more accurately predict
true positive open chromatin (HMMRATAC,
Tarbell & Liu, 2019).

Region Enrichment
A widely successful analysis type for gene

expression data is gene ontology analysis
or gene set enrichment analysis, which can
be extended to region-based enrichments. In
this context, instead of genes as the units of

interest, the analysis is done on non-coding
regions corresponding to regulatory elements.
As chromatin accessibility has increased, so
has interest in assigning biological meaning
to non-coding loci. Region-set enrichment
analyses are one approach to this problem.
Generally, these tools compare a set of regions
of interest (i.e., called peaks) to regions with
known biological function. The tools then as-
sess similarity to determine whether there are
significant enrichments of overlap between
the region sets. This approach can function by
identifying significantly enriched GO terms
(GREAT, McLean et al., 2010) and/or by
comparing any previously annotated region
set with your unknown peak set (regioneR,
Gel et al., 2016; LOLA, Sheffield & Bock,
2016; annotatr, Cavalcante & Sartor, 2017;
GIGGLE, Layer et al., 2018). Therefore,
to assign more meaningful biological rela-
tionships to annotated ATAC-seq peaks, one
can investigate what specific biological fea-
tures are correlated or enriched in your peak
set (Table 8). These tools and other related
tools have been reviewed elsewhere in detail
(Dozmorov, 2017; Simovski et al., 2018).

Single-Cell
Although single-cell ATAC-seq (scATAC-

seq) is only a few years old (Buenrostro, Wu,
& Litzenburger et al., 2015; Cusanovich et al.,
2015), the number of available analysis tools
has proliferated rapidly (Table 9). A primary
challenge to any single-cell sequencing assay
is the sparsity of data. For that reason, modifi-
cations to general ATAC-seq data processing
are necessary. Tools specific to single-cell
ATAC-seq analysis include both raw process-
ing pipelines (Cell Ranger ATAC; BROCK-
MAN, de Boer & Regev, 2018; Scasat,
Baker et al., 2019; SnapATAC, Fang et al.,
2019; scATAC-pro, Yu, Uzun, Zhu, Chen, &
Tan, 2019) and downstream analysis tools,
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particularly for clustering individual cells
into separate cell-type populations (BAP,
Lareau et al., 2019; scABC, Zamanighomi
et al., 2018; SCALE, Xiong et al., 2019) and
identifying transcription factor accessibility
(SCRAT, Ji, Zhou, & Ji, 2017; chromVAR,
Schep, Wu, Buenrostro, & Greenleaf, 2017;
Cicero, Pliner et al., 2018; cisTopic, Bravo
González-Blas et al., 2019; scOpen, Li &
Kuppe, et al., 2019). Single-cell ATAC-seq
analysis is a rapidly changing area, with many
of these tools published only within the past
year.

CONCLUSION
Chromatin accessibility analysis is be-

coming increasingly relevant for a range of
biological research areas. As scientists realize
the richness of chromatin accessibility data,
new analytical approaches and tools are be-
ing developed. At the same time, chromatin
accessibility analysis is now approachable
by individuals with a wider range of per-
spective and experience. This has led to a
wide increase in biological results, tools, and
analytical approaches.

In our survey of ATAC-seq analysis tools,
we identified more than 50 tools employed
specifically for ATAC-seq data analysis. In
assessing this diverse range of tools, we have
found it useful to categorize them by primary
aim. Because the diversity and number of
available tools and approaches is likely only
to increase as ATAC-seq analysis becomes
mainstream, we believe it will be important
to continue to revisit such tool surveys as the
field develops. To address this, we maintain an
expanding list of ATAC-seq tools at https://
github.com/databio/awesome-atac-analysis.
These summaries provide novices with a basic
understanding and starting point, and also give
experienced analysts a reference resource to
provide ideas for more detailed analysis.
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