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Over the last decade, development and application of a set of molecular genomic approaches based on the
chromosome conformation capture method (3C), combined with increasingly powerful imaging
approaches, have enabled high resolution and genome-wide analysis of the spatial organization of chro-
mosomes. The aim of this paper is to provide guidelines for analyzing and interpreting data obtained with
genome-wide 3C methods such as Hi-C and 3C-seq that rely on deep sequencing to detect and quantify
pairwise chromatin interactions.

� 2014 Elsevier Inc. All rights reserved.
‘‘Don’t panic’’ – Hitchhiker’s Guide to the Galaxy, Douglas
Adams.
1. Introduction

The human genome consists of over 6 billion nucleotides and is
contained within 23 pairs of chromosomes. If the chromosomes
were aligned end to end and the DNA stretched, the genome would
measure roughly 2 m long. Yet the genome functions within a
sphere smaller than a tenth of the thickness of a human hair
(10 lm). This suggests that the genome does not exist as a simple
one-dimensional polymer; instead the genome folds into a com-
plex compact three-dimensional structure.

It is increasingly appreciated that a full understanding of how
chromosomes perform their many functions (e.g. express genes),
replicate and faithfully segregate during mitosis, requires a
detailed knowledge of their spatial organization. For instance,
genes can be controlled by regulatory elements such as enhancers
that can be located hundreds of Kb from their promoter. It is now
understood that such regulation often involves physical chromatin
looping between the enhancer and the promoter [28,40,15,3
0,38,51,48]. Further, recent evidence suggests chromosomes
appear to be folded as a hierarchy of nested chromosomal domains
[33,16,37,43,24,7], and these are also thought to be involved in reg-
ulating genes, e.g. by limiting enhancer–promoter interactions to
only those that can occur within a single chromosomal domain
[21,13,41,23,49].

The chromosome conformation capture methodology (3C) is
now widely used to map chromatin interaction within regions of
interest and across the genome. Chromatin interaction data can
then be leveraged to gain insights into the spatial organization of
chromatin, e.g. the presence of chromatin loops and chromosomal
domains. The various 3C-based methods have been described
extensively before and are not discussed here in detail [5,36]. We
first discuss methods and considerations that are important for
using deep sequencing data to build bias-free genome-wide chro-
matin interaction maps. We then describe several approaches to
analyze such maps, including identification of patterns in the data
that reflect different types of chromosome structural features and
their biological interpretations.
2. Comprehensive genome-wide measurement of chromatin
interactions

Indiscriminate methods such as microscopy or FISH can study
the 3D genome, but have limited resolution and are limited in their
capacity to measure multiple discrete loci simultaneously. The
Chromosome Conformation Capture (3C) method was the first
molecular method to interrogate physical chromatin interactions
[14]. 3C has since been further developed into various other deriv-
atives including 4C [45,54], 5C [17] and Hi-C [33]. These methods
use 3C as the principal methodology by which they capture geno-
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mic interactions. They differ in the actual method by which the
captured interactions are measured, e.g. by PCR in 3C and by unbi-
ased deep sequencing in Hi-C and 3C-seq. Though the 3C method
does capture genome-wide data, it was not until the era of deep
sequencing came about that one was able to survey all genome
wide interactions in a single experiment, as in Hi-C and 3C-seq.

In 3C, cells are cross-linked using formaldehyde, lysed and the
chromatin is then digested with a restriction enzyme of choice
(typically HindIII or EcoRI). The chromatin is then extracted and
the restriction fragments are ligated under very dilute conditions
to favor intra-molecular ligation over inter-molecular ligation.
The crosslinks are then reversed, proteins are degraded and DNA
is purified. The newly generated chimeric DNA ligation products
represent pairwise interactions (physical 3D contacts) and can
then be analyzed by a variety of down-stream methods. This
results in a collection of chimeric DNA fragments consisting of a
ligation of DNA sequences from two interacting loci.

Currently, there are two 3C-based methods to obtain genome-
wide chromatin interaction data: Hi-C and 3C-seq. In the Hi-C pro-
tocol one includes a step to introduce biotinylated nucleotides at
ligation junctions which enables the specific purification of these
junctions [33]. This has the important advantage that it prevents
sequencing DNA molecules that do not contain such junctions
and are thus mostly uninformative. In 3C-seq one employs the
classical 3C protocol and often a more frequently cutting enzyme
(e.g. DpnII) followed by intra-molecular ligation without biotin
incorporation [43]. The ligated DNA is then directly sequenced to
identify pairwise chromatin interactions genome-wide. The 3C-
seq methodology sequences all molecules including un-ligated
molecules which can complicate the processing/filtering steps
and can reduce the percentage of usable reads.

We propose guidelines for analyzing genome-wide chromatin
interaction maps generated by Hi-C, but many of these consider-
ations also apply to 3C-seq or other equivalent data.
3. Hi-C data resolution

The space of all possible interactions, which is surveyed by Hi-
C experiments, is very large. For example, consider the human
genome. Using a 6-bp cutting restriction enzyme, there are ~106

restriction fragments, leading to an interaction space on the order
of 1012 possible pairwise interactions. Thus, achieving sufficient
coverage to support maximal resolution is a significant challenge.
However, once can reduce the interaction space, and thus the res-
olution, by aggregating restriction fragments into fixed-size
bins which in turn increases the effective coverage (see Section
5.4).

In light of this, it is critical to establish in advance the goals of
the experiment, meaning whether one is most interested in either
large-scale genomic conformations (e.g. genomic compartments)
or specific small-scale interaction patterns (e.g. promoter–enhan-
cer looping).

If the goal is to measure large scale structures, such as genomic
compartments, then a lower resolution will often suffice (1–10 MB).
Here, Hi-C a traditional 6 bp-cutting enzyme could be used. How-
ever if the goal is to measure specific interactions of a small region,
e.g. promoter–enhancer looping, then one may choose to use a
restriction enzyme that cuts more frequently (e.g. 4 bp) and a
method that does not measure the entire genome, but instead
focuses on exploring only a subset of the genome (e.g. 3C/4C/5C).

In Hi-C the maximal effective resolution of a dataset is deter-
mined by several factors, first and foremost is coverage. Given
increasing amounts of reads, one will cover more of the interaction
space and thus improve the maximal resolution. Library complexity
is another factor. Library complexity is defined as the total number
of unique chimeric molecules that exist in a Hi-C library, which is a
factor of both the number of cells and the quality of the library. A
library with a low complexity level will saturate quickly with
increasing sequencing depth, e.g. less information will be gained
from additional sequencing. The saturation curve can be estimated
from a dataset by plotting the cumulative number of unique inter-
actions observed versus increasing read depth.

In our experience, an adequately complex Hi-C dataset for the
human genome with roughly 100 million mapped/valid junction
reads, is sufficient to support a 40 kb data resolution. Data below
40 kb may be usable, though it will suffer from a higher level of
noise. It is important to note that effective resolution scales with
genomic distance, such that short-range interactions will typically
have higher coverage and thus higher effective resolution.
4. Computational considerations

Hi-C data produced by deep sequencing is no different than
other genome-wide deep sequencing datasets. The data starts out
as genomic reads in the traditional FASTQ file format (containing
a DNA read string and a phred quality (QV) score string). Hi-C
libraries are traditionally sequenced using paired-end technology,
where a single read is produced from each 50 end of the molecule.
However, Hi-C ligation products can also be sequenced using single
end reads, assuming reads are sufficiently long to cover both parts
of the chimeric molecule (ligation product) and are handled appro-
priately during the mapping steps (see Section 5.1).

The data storage requirements for Hi-C datasets are almost
solely driven by the sequencing depth needed to achieve the
desired resolution and the size of the FASTQ files. The processed
Hi-C data file will normally be much smaller than the size of the
FASTQ files. The majority of mapping, filtering and processing steps
are independent and can therefore also be parallelized.
5. Hi-C workflow

We describe the major steps needed to process a Hi-C dataset
(Fig. 1):

1. Read mapping
2. Fragment assignment
3. Fragment filtering
4. Binning
5. Bin level filtering
6. Balancing

5.1. Read mapping

Reads can be aligned using any standard read alignment soft-
ware (e.g. Bowtie [31]) to the genome of interest. Any aligner can
be used for mapping Hi-C reads – the goal is to simply find a
unique alignment for each read. Even though Hi-C data is
sequenced using paired-end reads, the reads are not mapped using
the paired-end mode of most aligners. The paired-end mode for
most aligners assumes that the ends of a single continuous geno-
mic fragment are being sequenced, and the distance between these
two ends fits a known distribution. Since the insert size of the Hi-C
ligation product can vary between 1 bp to hundreds of megabases
(in terms of linear genome distance), it is difficult to use most
paired-end alignment modes as is. One straightforward solution
is to map each side of the paired end read separately/indepen-
dently using a standard alignment procedure.



Hi-C Processing Flow Chart

Read Mapping

Fragment Assignment

Fragment Filter

Binning

Bin Filter

Balancing

Iterative Mapping

Self-Fragment Filter

PCR Dupe Filter

Strand Filters

Analysis and Interpretation

iterate

Fig. 1. Flow chart for processing Hi-C data.

a

Iterative Mapping 
(paired end)

A B

Hi-C Method

Sequencing

Fragment A Fragment B

paired end

single end
*

A B

c
A

Dangling End

Self Circle

Error Pair

Error Pair

Valid Pair

Valid Pair

Valid Pair**

Valid Pair**

b

non-informative single-end read

possible artifact (undigested chromatin)

*

**

Fig. 2. Mapping and filtering. (a) Following the Hi-C method, fragments are ligated.
Hi-C junctions are then sheared and sequenced. Hi-C junctions can be sequenced by
using either paired-end sequencing or single-end sequencing. ⁄Here a Hi-C junction
is incapable of being sequenced by a 100 bp single end run, as the read does not
extend past the junction into the second fragment. Should the read length increase,
then the sequenced read would cross the junction. ⁄⁄Here we highlight the fact that
same stranded paired reads could be the result of undigested chromatin, and thus
would not represent an actual Hi-C interaction. (b) Iterative mapping approach for
aligning paired-end Hi-C reads. In gray, from top to bottom above/below each read,
the mapping iterations are shown as the read is extended and re-mapped. Iterative
mapping concludes when either the read is uniquely aligned, or the maximal read
length is reached. The number of iterations is a factor of mappability and the
location of the junction. (c) After mapping, the paired reads can either map to a
single fragment, or to different fragments. Reads mapping to a single fragment are
considered uninformative. Self-ligations and un-ligated fragments are classified by
the read strand. Inward pointing reads are considered un-ligated fragments
(‘‘dangling ends’’). Outward pointing reads are classified as self-ligated fragments
(‘‘self-circles’’) as they form circular products. Same-strand reads are classified as
‘‘error pairs’’ as these products are a result of either a mis-mapping, random break,
or an incorrect genome assembly. Reads mapping to different fragments are used to
assemble the Hi-C dataset. All strand combinations are possible and are expected to
be observed in equal proportions (25% per combination). However, inward and
outward pairs could be the result of un-digested restriction sites, and then
processed as either self-ligated or un-ligated products. Imbalance in the relative
proportions of the strand combinations, could suggest the need for additional
filtering.
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5.1.1. Read mapping – iterative mapping strategy
The Hi-C method creates ligation junctions of varying sizes

(Fig. 2a). The molecules are then sheared to the desired size range
(normally 100–300 bp). Hi-C interactions are simply chimeric liga-
tion products, formed of two distinct genomic fragments. One can
thus sequence the ends of the molecule to identify the two pairs in
the ligation product most efficiently. However, one could also read
the molecule in its entirety and then computationally identify the
two distinct genomic fragments, though the exact position of the
ligation site is unknown.

Searching for the ligation junction is possible, but the junction
site is not guaranteed to be covered with short reads. For example,
given a 300 bp Hi-C ligation product where the junction site is
located at position 150 (in the center) of the molecule, if one were
to perform a traditional 50 base-pair paired end sequencing, only
the 50 base-pairs on each end would be sequenced. The 200 inter-
nal base-pairs of this molecule would not be sequenced, even
though one could still correctly identify each of the interaction
pairs. It would be impossible to first search for the junction site
and then split the reads into two, since the junction site is not
measured. Instead we favor an iterative mapping approach to
solve this problem [27] (Fig. 2b). The idea is to attempt to
uniquely map the start of the read without including the junction
site. Reads are first truncated to 25 bp starting at the 50 end and
mapped to the genome. Reads that do not uniquely map to the
genome are extended by an additional 5 bp and then re-mapped.
This process is repeated until either all reads uniquely map or
until the read is extended to its entirety. Only paired end reads
in which each side can be uniquely aligned are kept. All other
paired end reads are discarded. We propose that in the future,
dedicated 3C/Hi-C mapping algorithms could be used in order to
streamline the mapping process.
5.2. Fragment assignment

For each mapped read, the genomic alignment location is
assigned to one of the restriction fragments, since they can be cal-
culated in advance from the genome sequence. The mapped read is
assigned according to its 50 mapped position. Mapped read posi-
tions should fall close to a restriction site (where ‘‘close’’ is define
by the molecule size distribution), and no further than the maxi-
mal molecule length away. Given a normal Hi-C experiment, which
is sheared to 100–300 bp, the location of the ligation junction
within each molecule should be normally distributed around the
center of the molecule. The mapped reads locations relative to
the ligation site should then follow this normal distribution. Reads
that align more than the maximal molecule length away from the
closest restriction enzyme are the result of either non-canonical
enzyme activity or non-enzymatic physical breakage of the chro-
matin. It has been shown that these reads produce informative
Hi-C interactions, and thus are not discriminated against [27]. Once
each read has been assigned to a restriction fragment, filtering
must be applied to discard any technical noise in the dataset.
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5.3. Fragment-level filtering

After assigning each of the paired-end reads to single fragments,
it is necessary to perform some basic filtering (see Fig. 3). The fol-
lowing two scenarios are possible:

1. The read pair falls within the same restriction fragment.
2. The read pair falls within distinct restriction fragments.

If the read pair maps to the same restriction fragment, it can
represent either an un-ligated fragment (‘‘dangling end’’) or a
ligated, circularized fragment (‘‘self-circle’’). Each of these two
cases is considered non-informative, and should therefore be
removed. However, it is possible that this data could be used for
other analyses.

After removing same-fragment pairs, the remaining pairs are
filtered to remove any redundant (identical) PCR artifacts. PCR
duplicates can be detected by either sharing the exact same
paired-end sequence, or by sharing the exact same 50 alignment
positions of the pair. One can also filter for possible undigested
restriction sites, which can be identified by both reads mapping
to the same strand and the distance between the two mapped posi-
tions being small (fits the molecule size distribution).
5.4. Binning

The maximal resolution of a Hi-C dataset is determined by the
restriction enzyme used. Normally, a Hi-C dataset is not sequenced
deep enough to support this maximal data resolution, as it is not yet
cost-effective to obtain a sufficient number of reads. Instead, the
data can be binned into various fixed-size genomic intervals, to
aggregate data and smooth out noise. Hi-C restriction fragments
are assigned to bins by their midpoint coordinate. Binning the Hi-C
data reduces the complexity and number of possible genome wide
interactions which in turn increases the signal to noise ratio. Data
is typically binned into sizes ranging from 40 kb to 1 MB. All bin–
bin interactions are simply aggregated by taking the sum, though
one could use other more robust methods to aggregate the signal.
A single Hi-C dataset can be binned into multiple bin sizes, as each
bin size can be used for different analysis goals. Following the bin-
ning, the data can be stored in a fixed-size symmetrical matrix for-
mat, though this file format may not be optimal for storing large
Hi-C datasets since the number of the matrix entries can be much
larger than the number of reads.
5.5. Bin-level filtering

Prior to matrix balancing, it is advisable to remove any bins
(rows/columns) from the dataset that have either very noisy or
too low of a signal. These bins are normally found in genomic
regions with low mappability or high repeat content, such as
around telomeres and centromeres. Since these bins suffer from
such a high noise level, it is useful to remove them rather than
attempting to correct them for technical biases (see below). Vari-
ous methods can be used to detect these bin outliers. Current
methods detect bins with low signal by comparing the individual
bin sums to the mean. Outliers can be detected by a percentile cut-
off (e.g. removing the bottom 1% of rows/columns), or by using the
variance as a measure of noise. Similarly, outlier point interactions
(bin–bin) can be detected by a percentile-based filter (such as
removing the top 0.5% of data points). In some instances, a single
bin–bin point interaction can have a level of reads orders of mag-
nitude higher than one would expect.
5.6. Balancing

Hi-C data can contain many different biases, some of known ori-
gin and others from an unknown origin. There are two general
approaches to Hi-C bias correction: explicit and implicit. Explicit
bias models take into account factors such as mappability, GC con-
tent and fragment length [52,26]. Alternatively, since it can be
quite difficult to know each and every bias, one can use an implicit
approach which we refer to as balancing (also known as iterative
correction) [27,11]. The balancing procedure is based on the Sink-
horn–Knopp balancing algorithm [46]. This procedure attempts to
balance the matrix by equalizing the sum of every row/column in
the matrix. The procedure is based on the assumption that since
we are interrogating the entire interaction space in an unbiased
manner, each fragment/bin should be observed approximately
the same number of times in the experiment (interpreted as the
sum of the genome-wide row/column in the interaction matrix).
The algorithm iteratively alternates between two steps until con-
vergence. First, each row is divided by its mean. Then, each column
is divided by its mean. This process is guaranteed to converge. Both
explicit bias correction and Sinkhorn–Knopp balancing yield com-
parable results [27]. Regardless of the method used, it is important
to visually assess the data before and after bias correction, in order
to determine if the procedure was successful. A successful filtering
and bias correction would smooth the interaction matrix such that
no obviously high rows/columns would remain.
6. Analysis and interpretation of Hi-C data

Following the mapping, filtering and bias-correction of the Hi-C
data, we are left with a binned, genome-wide interaction matrix,
where each entry reflects an interaction frequency between two
genomic loci. The measured interaction frequencies are unscaled,
in the sense that they cannot be directly translated into an actual
fraction of cells. Extraction of relevant biological knowledge from
this interaction matrix is one of the major challenges of Hi-C data
analysis. This includes differentiating biological signal from noise,
identification of interaction patterns and interpretation of these
patterns.

There are a number of factors that complicate this analysis. First,
we have to consider the fact that we are measuring interaction fre-
quencies over a population of cells (Fig. 4). This is critical in terms of
data interpretation since when we consider an interaction pattern
consisting of multiple pairs of loci, we cannot distinguish between
scenarios in which interactions will co-occur simultaneously in a
single cell, are mutually exclusive, or somewhere in between.
Accordingly, observing a ‘‘smooth’’ interaction matrix that shows
little position-specific structure does not rule out the existence of
structure in the underlying genomes – it simply means that if such
structures exist, they are not consistent between cells. Second, a
limitation of current analysis methods is that often the patterns
are defined implicitly rather than explicitly. In other words, rather
than formally define what a specific interaction pattern looks like
and search for it in the interaction matrix, interaction patterns are
defined as the output of some method. For example, genomic com-
partments appear as a checkerboard-like interaction pattern (see
relevant section), but they are identified using a method that does
not explicitly search for this pattern (i.e. Principal Component Anal-
ysis). As a result, it is difficult to evaluate the validity of a method or
compare methods aimed at identifying the same type of interaction
pattern. Third, different types of interaction patterns co-exist and
overlap each other. Given that in many cases we lack an explicit def-
inition of these patterns, as mentioned above, it can be difficult to
disentangle different types of interaction patterns. In practice,
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Fig. 4. Averaging effects in Hi-C data. In this toy example, a square interaction pattern is apparent in the top interaction matrices representing subpopulations, yet its location
varies. The final Hi-C interaction matrix, which consists of the average of all subpopulations, does not show the square interaction pattern, and shows a pattern that is not
present in individual subpopulations.
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many of the current approaches analyze each interaction pattern
separately under a simplifying assumption of independence, i.e.
by assuming that either the effect of other patterns is negligible
or that the other patterns can be normalized out of the data. Fourth,
it is important to remember that Hi-C measures interaction fre-
quency between loci, not distance. Formaldehyde crosslinking will
occur only between loci which physically interact. Thus, a weak Hi-
C signal between two loci indicates that the interaction occurred in
a small fraction of the population, but we cannot determine the dis-
tance between the two loci without making some simplifying
assumptions about how interaction frequencies relate to physical
distances. Finally, we cannot assume ergodicity of interaction fre-
quencies. In other words, frequencies in the cell population cannot
necessarily be interpreted as frequencies in time (see Fig. 5). For
example, an interaction which occurs in a small fraction of cells
and thus produces weak signal in Hi-C cannot be concluded to nec-
essarily be an unstable interaction. Alternatively, any assumption of
ergodicity should be made consciously.

Several different types of interaction patterns have been
observed in interaction maps. These patterns vary in scale, from
genome-wide patterns to point interactions between loci, and in
their ubiquity, from constant between different species to condi-
tion-specific. Due to the speculative nature of biological interpreta-
tion of interaction patterns and the aforementioned complications,
it is often useful to separate the process of pattern identification
from the process of pattern interpretation. Here we focus mostly
on pattern identification, but also briefly discuss common interpre-
tations of each pattern.

We focus on 5 types of patterns typically observed in mamma-
lian genomes. For each pattern, we discuss how it is defined, how it
looks visually in the interaction matrix, how it can be identified
computationally and how it can be interpreted biologically:

(1) cis/trans interaction ratio
(2) Distance-dependent interaction frequency
(3) Genomic compartments
(4) Topological domains
(5) Point interactions
non-ergodic ergodic

�m
e

Fig. 5. Ergodicity in Hi-C. This toy example follows, over time, the interaction of
two loci in a population of 4 cells. Each row represents a time point and each
column represents a cell. In the non-ergodic population (left), the interaction is
maintained in the same cell over all time points. In the ergodic population (right),
the interaction appears in different cells, such that its frequency in time is equal to
its frequency in the population (both are 0.25). In Hi-C, which measures a single
time point (i.e. a row) in a population of cells, the ergodic and non-ergodic cases are
indistinguishable.
While we outline possible approaches for independent analysis
of each type of pattern, there exist alternative approaches for
explicitly considering multiple patterns simultaneously [43].
Finally, as with any approach, we advise not to apply the proposed
techniques blindly, but rather critically and always visually evalu-
ate the data. Indeed, other interaction patterns, which we do not
discuss here, have also been observed including patterns resulting
from circular chromosomes and centromere clustering [18]. Such
patterns may require careful consideration and the application of
specialized methods. Alternatively, methods can be derived given
a specific biological question, for example, whether a given set of
genes interact more frequently than expected by random.

Following our discussion of individual patterns, we discuss
reconstruction of 3D structures from Hi-C data, application of Hi-
C data to problems in genome assembly and future directions.
6.1. Cis/trans interaction ratio

The strongest interaction patterns which are observed in Hi-C
maps are genome-level patterns [33]. By genome-level we mean
that the patterns are not locus-specific, but instead reflect average
genome-wide trends. Two genome-level patterns have consis-
tently been observed in Hi-C data in various species and cell-types.

The first pattern is a higher interaction frequency, on average, of
pairs of loci which reside on the same chromosome (i.e. in cis) than
loci which reside on different chromosomes (i.e. in trans). In a gen-
ome-wide interaction matrix, this pattern appears as square blocks
of high interaction centered along the diagonal where each square
aligns with one chromosome (Fig. 6). The pattern is likely due, at
least in part, to a phenomenon known as chromosome territories,
where chromosomes are physically separated and occupy a dis-
tinct volume in the nucleus. Since this pattern is largely constant
across cell types and species, it is typically less useful for studying
aspects that are specific to the given biological system. However,
this fact makes this pattern a useful proxy for evaluating the qual-
ity of the data. If noise in the matrix, due to factors such as random
background ligation, is expected to affect both cis and trans inter-
actions similarly, a noisier experiment will result in a lower ratio
between cis and trans interactions. Thus, it is common to use this
simple statistic (i.e. the ratio between the sum of the cis interaction
frequency and the sum of trans interaction frequency) to quantify
transcis
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Fig. 6. cis/trans ratio. A Hi-C interaction matrix (shown on 3 chromosomes for
simplicity). Sample cis (intra-chromosome) and trans (inter-chromosome) regions
are highlighted.
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Metaphase HeLa
Unsynchronized Hela 

Fig. 7. Distance-dependent interaction frequency. Shown are distance-dependent
interaction frequency curves for metaphase and unsynchronized HeLa Hi-C from
[35]. Note the slope change in the metaphase data which occurs at 10 Mb (indicated
by the black arrow). Thus, loci separated by fewer than 10 Mb interact frequently,
whereas loci separated by more than 10 Mb rarely interact. This information has
been incorporated into polymer models of mitotic chromosomes.
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this pattern. Typical values for the cis/trans ratio in high quality
experiments are in the range 40–60 for the human genome.

6.2. Distance-dependent interaction frequency

The second genome-level interaction pattern is a distance-
dependent decay of interaction frequency (see Fig. 7). In other
words, interaction frequency between loci in cis decreases, on
average, as their genomic distance increases. In the interaction
matrix this pattern appears as a gradual decrease of interaction fre-
quency the further one moves away from the diagonal. This pattern
may be due to random movement of the chromosome, following
the intuition that loci which are nearby in the genome will interact
frequently if they move randomly in 3D space. The theory underly-
ing this type of intuition is well established in the field of polymer
physics [12,20]. Many basic models of general polymers in polymer
physics predict a distance-dependent decay of interaction fre-
quency, where the simplest model, known as the ideal chain, is
equivalent to a random walk in 3D space. A central aspect of all
these models is that they characterize polymers as distributions,
rather than single structures, inherently accounting for random-
ness and structural variability. Specific models are thus character-
ized by statistical properties such as the mean interaction
probability for a pair of loci separated by a given distance. Thus,
by estimating the distance-dependent interaction frequency from
our data, which is derived from a population of cells, we can ask
which polymer models are consistent with the observed pattern.
For example, the distance-dependent interaction frequency of an
ideal chain is expected to have the form of the power-law decay
pinteraction(x,y) = Z * dist(x,y)�1.5. In fact, this specific decay matches
the distance-dependent interaction frequency observed in yeast.

Analysis of distance-dependent interaction frequency is typi-
cally performed using one of two methods. The first method is dis-
crete binning. With this method, we bin all interaction frequencies
according to their genomic distance, and calculate the average of
each bin. The second method is interpolation. With this method,
we fit some continuous function to the data and use this function
to represent it. In some cases, binning may be used as a prelimin-
ary step for fitting a continuous function. Due to the fact that many
polymer models predict a power-law decay, it is helpful to plot the
resulting decay function on a log–log plot so that power-law
decays will appear linear. However, it is important to perform
the calculation of the decay function on the initial data, not on
the log-transformed data due to theoretical considerations [10].
For related reasons, it is advisable to use logarithmic-sized bins if
using the binning scheme, e.g. such that each bin will be double
the size of the previous bin.

While it is convenient if the observed distance-dependent inter-
action frequency matches what is expected by a simple polymer
model, this is often not the case. However, it can still be useful to
examine a more complicated decay function, since it could provide
some insight, such as different regimes of decay at different geno-
mic length scales (Fig. 6). This can, in turn, promote the develop-
ment of more complex polymer models that reproduce the
observed pattern. It is important, though, to realize the limitations
of this type of analysis. Hi-C data incorporates several different
types of patterns, some of which are locus-specific and will thus
not be reproduced by these types of models which do not include
locus-specific constraints. Additionally, some of these local pat-
terns could affect the shape of the decay function. Finally, even if
a Hi-C map contains no locus-specific interaction patterns and is
consistent with some polymer model, it is not sufficient by itself
to conclude that the model is correct, since other polymer models
could potentially produce the same decay function. Ultimately,
what matters is how useful such a model is for gaining biological
insight and whether it can produce testable hypotheses.
6.3. Genomic compartments

Next, we consider interaction patterns which are position-spe-
cific. The largest-scale position-specific interaction pattern is
known as genomic compartments [33]. This interaction pattern
appears on the interaction matrix as a ‘‘checker-board’’-like pat-
tern consisting of alternating blocks, �1–10 mb in size (in the
human genome), of high and low interaction frequency (Fig. 8).
This interaction pattern can be explained by a simple underlying
principle where chromosomes are composed of two types of geno-
mic regions that alternate along the length of chromosomes and
where the interaction frequencies between two regions of the
same type tend to be higher than interaction frequencies between
regions of different types. We refer to these two types as A and B
compartments [33].

While this interaction pattern is intuitive, its current definition
is implicit – the genomic compartments are usually considered to
be given by the first principal component of the interaction matrix.
The reasoning for this definition is as follows. Imagine each bin in
the 1d genome is assigned a number c(x) quantifying whether it
belongs to A (positive value) or B (negative value). Now, we decide
that the interaction score between two loci x,y is c(x)c(y). Note that
this formulation is sufficient to reproduce a checkerboard pattern:
when the types of x,y are the same, their signs will be the same and
will yield a positive interaction score, and when their types are dif-
ferent their signs will be different, resulting in a negative interac-
tion score. Thus, given an interaction matrix, we are given all
interaction frequencies and want to find the compartment c(x) of
each position. It turns out that the first principal component found
by a Principal Component Analysis can be viewed as finding the
optimal values of c(x) such that difference between the observed
interaction frequencies and c(x)c(y) is minimal (mean squared
error is minimized). Thus, if the compartment pattern is suffi-
ciently strong, this procedure should find it. However, if the com-
partment pattern is weak, it is possible that the first eigenvector
will not capture it, and instead capture some other aspect of the
data. This is an intrinsic limitation of the method due to the lack
of an explicit pattern definition. In this case we suggest examining
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Fig. 8. Genomic compartments. Top: Hi-C interaction matrix (shown on 3
chromosomes for simplicity) along with the calculated compartment value (first
principal component; shown as alternating red-blue track next to the matrix).
Below: outer product of the first principal component with itself yields a rank-1
reconstruction of the interaction matrix.
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the second or third eigenvectors. Alternatively, one could use any
standard clustering approach, such as k-means, to cluster the rows
of the interaction matrix into two clusters.

Genomic compartments have been found to be correlated with
chromatin state, including DNA accessibility, gene density, replica-
tion timing, GC content and histone marks [33]. Thus, A-type com-
partments are defined as the euchromatic gene-dense regions while
B compartments are defined as gene-poor heterochromatic regions.
Genomic compartments have been found to have high-plasticity,
such that they change in different cell-types and biological condi-
tion, matching large scale changes in gene activity. Individual com-
partment blocks tend to be on the order of 1–10 Mb in length, and
are thus easy to extract even in experiments with very low sam-
pling. Finally, it is important that while compartment signal is
strong and easy to observe in large bins, the interaction frequencies
at individual positions that have the same compartment type are
quite low. Thus, given that Hi-C measures a population average, it
is likely that this pattern reflects a general, highly stochastic, ten-
dency of compartments to interact, rather than a set of determinis-
tic interactions specified by individual loci.
6.4. Topological domains

While genomic compartments are useful for understanding
general organization principles of the genome, many biological
processes occur at a smaller scale. Specifically, enhancer–promoter
interactions that underlie gene regulation in metazoans often take
place at sub-Mb distances. Recently, 3C-based techniques have
revealed the existence of sub-Mb structures that are referred to
as topologically associating domains or TADs [37,16,43,24]. TADs
are contiguous regions in which loci tend to interact much more
with each other than with loci outside the region. In the interaction
matrix TADs appear as square blocks of elevated interaction fre-
quency centered along the diagonal (Fig. 9). However, the defini-
tion of TADs is complicated by the fact that actual interaction
patterns are complex and contain multiple hierarchies of overlap-
ping block-like structures, as assessed by visual inspection of chro-
matin interaction maps. Nonetheless, given some definition of
TADs, these domains have been shown to be associated with
gene-regulatory features and it is hypothesized that TADs specify
elementary regulatory micro-environments in which promoters
interact with local enhancers [21,44,47]. In addition, TAD-like
structures of various sizes have been observed in species ranging
from mammals to bacteria [37,43,32,24,16].

As hinted above, TADs are also often defined implicitly. We out-
line two such methods for identifying TADs. Both methods take the
following approach: First, they summarize the TAD signal using
some statistic, such that TAD signal is converted into a 1d profile
along the genome. Then, they use the 1d profile to identify poten-
tial boundaries between TADs and produce a set of discrete non-
overlapping TADs. It is important to note that while these methods
provide a useful heuristic for quantifying some of the TAD-level
patterns, they do not provide an actual predictive model, or point
to physical processes that drive domain formation. Without an
explicit definition of TADs, these methods are difficult to compare
and evaluate critically. However, it is clear that a discrete set of
non-overlapping regions is only a first approximation and likely a
significant oversimplification of the interaction patterns which
are observed in the data. Alternative approaches are able to accom-
modate for TADs at different scales [19,43].

An approach by Dixon et al. [16] uses the following statistic: for
each bin, we calculate the difference between its average upstream
interactions and its average downstream interactions (within some
genomic range). This difference is then transformed into a chi-
squared statistic and the resulting value is referred to as the direc-
tionality index. At the boundaries of TADs, we expect to see a sharp
change in the directionality index. Boundaries are then associated
with each other using a Hidden Markov Model. Alternatively, oth-
ers have simply used the ratio between average upstream and
average downstream interactions [35].

An alternative approach is to calculate for each bin the average
of interaction frequencies crossing over it (within some genomic
range). This is referred to as the insulation score and can be
thought of as the average of a square sliding along the matrix
diagonal. We expect that this value will be lower at TAD
boundaries. Then one can use standard techniques to find local
minima and use those as boundaries, and define regions between
consecutive boundaries to be TADs.

The block-like structure of TADs clearly indicates elevated
interaction frequency within a TAD. However, given that we mea-
sure a population average and the observed intricate hierarchies of
such structures, interpretation of TADs is not straight-forward. It
has been proposed that TAD-like structure may be driven at least
in part by looping interactions between loci located within them
[22] or by supercoiled plectonemes [32,6]. Additionally, some
genomic features such as CTCF and cohesin binding have been
shown to be enriched at TAD boundaries [16,49]. It remains
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Fig. 9. Topologically associating domains (TADs). A 45-degree rotated interaction matrix shows TAD patterns in a 4 Mb region. Below, the directionality index and insulation
score are shown together with the called non-overlapping set of TADs. Data was taken from Dixon et al. [16].
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unclear what physical structures TADs exactly represent and how
they are specified in the genome.

6.5. Point interactions

The final type of interaction pattern we discuss is point interac-
tions. While TADs may be relevant for constraining promoter–
enhancer interactions, the actual regulatory interactions are proba-
bly of much smaller scale. Ultimately, protein-mediated interac-
tions of two localized genomic elements, e.g. enhancers and
promoters, which are typically up to a kb in length, can activate
the expression of a gene. Given sufficient resolution, we expect such
point interactions to appear as a local enrichment in contact
probability.

As with some of the other interaction patterns, current
approaches for finding point interactions do not provide an explicit
model of what a point interaction should look like. Instead, these
approaches try to find outliers which show higher interaction fre-
quency than expected, where the background model may consist
of other previously mentioned interaction patterns [28,40,1]. Typ-
ically, the background model consists only of the strongest signal,
namely the distance-decay function, but other patterns such as
TADs can be incorporated as well. Given a background model, we
can then test the significance of individual pairwise interactions.
The resulting set of significant high outliers would then need to
be corrected for multiple testing. It is important to note that with-
out an explicit model of point interactions, it may be difficult to
distinguish between real point interactions and experimental
noise. Thus, it may be helpful to provide additional evidence
including analysis of biological replicates, and from alternative
methods as to the validity of such interactions (e.g. by showing
enrichment for enhancers and promoters).

While the biological interpretation of point interactions seems
to be straightforward, it is important to consider what such meth-
ods find. If we look for interactions that have a higher interaction
frequency then what is expected given their distance, we are not
evaluating their absolute interaction frequency. For example, con-
sider two loci which are nearby in the genomic sequence, and are
thus expected to interact very frequently. Such interactions may be
functional and biologically important, but they may not have a
much higher interaction frequency than expected by distance,
and thus may not be found to be point interactions. Similarly,
the expected interaction frequency for loci that are separated by
large genomic distances is very low. As a result even a small
increase in their interaction frequency can make their interaction
statistically significant even though their absolute interaction fre-
quency is still low, implying it occurs in only few cells. Thus, care-
ful biological evaluation is always required in order for interpreting
any statistical approach to identifying point interactions.

7. Structure reconstruction and polymer modeling

Given that Hi-C measures an aspect of the 3D structure of the
genome, it is natural to ask whether we can use Hi-C data to
infer the underlying 3D structures. In fact, Hi-C maps are remi-
niscent of 2D NMR spectrum maps used to infer 3D protein
structure with great accuracy. However it is important to realize
that there are important differences between protein structure
and genome structure that dramatically complicate inference of
the genome structure. First, inference of protein structures incor-
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porates knowledge of protein physics and the underlying
sequence. There are strong constraints on what conformations
are physically possible and there is a relatively good understand-
ing of the physics of various intramolecular interactions. On the
other hand, knowledge of chromatin physics is limited and chro-
matin structure is much less constrained than protein structure.
Second, chromatin fibers are much longer than proteins, in the
sense that the length of a chromosome may be as much as
105–106 times larger than the smallest structures of interest in
the chromosome. Third and most importantly, chromatin structure
is much more variable than protein structure, yet we observe
only the population average. In fact, it is debatable whether it
is even useful to infer a single average ‘‘consensus structure’’,
given the highly-stochastic nature of the genome structure.

With these limitations in mind, we consider 2 general
approaches to structure inference from Hi-C data:

(1) Consensus structure. These methods essentially ignore the
fact that structure is variable across the population and try
to find a 3D structure that is as consistent as possible with
the 3D interaction matrix [18,39,25,53,2,50,3]. Most meth-
ods follow some form of multidimensional scaling, formal-
ized as seeking 3D coordinates for all loci such that their
pairwise distances are as consistent as possible with the
observed interaction frequencies. These approaches require
making assumptions on how interaction frequency of loci
is related to their spatial distance.

(2) Ensemble of structures. These methods typically try to create
a set of structures such that either the average distances or
the contact probability between every two loci are consis-
tent with the observed interaction frequencies [22,34,25].
While this approach resembles the actual biology more clo-
sely, allowing for multiple structures makes the problem
even less constrained. In other words, there are likely many
different ensembles of structures that could explain a given
interaction Hi-C matrix. Additionally, such an ensemble of
structures may be difficult to interpret.

Once again, the utility of such models will be measured by
whether they can give biological insight and make useful
predictions.

8. Genome rearrangements and genome assembly

Typically, Hi-C data is mapped to a known high-quality genome
sequence and is used to answer questions regarding the 3D
organization of genomes. However, it has recently been shown in
a number of studies that Hi-C data can be useful to learn about
the 1D arrangement of the genome sequence and thus solve a
number of outstanding problems in the field of genome assembly
[29,8,9,4,42]. Ironically, the recent major advancement of DNA-
sequencing technologies has caused a decrease in the quality of
genome assemblies due to the use of short reads. Thus, genomes
assembled from short-read data consist of huge sets of contigs
(�100,000 contigs for Gb-scale genomes), which cannot be grouped
and ordered with this type of data. However, by mapping Hi-C data
to a set of contigs, we gain interaction frequency data over very large
genomic distances. We can then exploit a number of universal prin-
ciples relating 1d structure to 3D structure in order to associate and
order contigs in linear genome. We refer to this set of approaches as
DNA triangulation, due to their use of multiple lines of long-range
evidence (i.e. Hi-C interactions) to resolve genomic positions.

We list these principles and how they can be used:

1. Interactions of loci located in different nuclei are less frequent
than those in the same nucleus. This principle seems obvious,
but has important implications. In microbiome studies, which
analyze large mixed populations of different species, high-
throughput sequencing typically yields a large set of contigs,
yet it is difficult to establish which contigs belong to the same
genome. Using Hi-C data, we can determine that if two contigs
interact frequently in 3D they are likely to belong to the same
genome with high probability [9,4].

2. Interactions of loci located on different chromosomes are less
frequent than those in the same chromosome. As discussed
above, this pattern is both strong and ubiquitous. When per-
forming de novo genome scaffolding, we can thus use Hi-C data
to determine that contigs that interact frequently are likely to
belong to the same chromosome [29,8]. Additionally, since
homologous chromosomes are also separated into distinct ter-
ritories, this principle can be used to perform haplotype phas-
ing. A Hi-C paired-end read that maps to one SNP on each
side is much more likely to come from the same chromosome
than from the homologous chromosome [42].

3. Interactions of loci located far from each other along a chromo-
some are less frequent than loci that are near each other. Using
Hi-C data, we can arrange contigs which belong to the same
chromosome such that strongly interaction contigs are posi-
tioned next to each other [8,29].

While the goal of these techniques is not necessarily to learn
about the 3D structure of the genome, it is clear that they are
widely useful. When indeed such techniques will be adopted, they
may offer large amounts of Hi-C data as an important side benefit.
However, if one’s goal is to use Hi-C for DNA triangulation, it could
be useful to carefully consider some of the experimental design
and analysis choices. For example, locus-specific interaction pat-
terns are important for studying the biology of genome structure
but could pose problems for DNA triangulation. Pooling different
cell types, computationally or experimentally, could average out
some cell-specific interaction patterns.
9. Future challenges

Since Hi-C is a relatively new method and due to its growing
popularity, many of the current analysis methods are based on
heuristic approaches that are often tailored to answer a research
question specific to one study. As the field matures, it will be
important to develop rigorous theoretical foundations for Hi-C
analysis. In the specific case of pattern detection, it would be useful
to develop methods based on an explicit definition of each pattern.
While it is good to have a variety of ways to analyze Hi-C data, it
would be helpful to converge on some subset of techniques, rather
than reinvent new analysis methods in each published paper. This
would help make future results easier to compare and interpret. In
this respect, there is a growing need for comparative studies that
quantitatively contrast different Hi-C analysis methods (e.g. a com-
parison of 3D structure reconstruction methods). Such compari-
sons may not be trivial, since no alternative ‘‘gold standard’’
exists, and would probably need to rely on simulations. Neverthe-
less, comparative studies can be instrumental in advancing and
consolidating some of the existing methodology.
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