
UNIT 2  EPIGENOMICS
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Epigenome

2Original figure from ENCODE, Darryl Leja (NHGRI), Ian Dunham (EBI) 

nucleosome

histone

The epigenome is a multitude of chemical compounds that can tell the genome what to 
do. The epigenome is made up of chemical compounds and proteins that can attach to 
DNA and direct such actions as turning genes on or off, controlling the production of 
proteins in particular cells.                           

-- from genome.gov



Epigenomic marks
Chemical compounds Proteins Other molecules Other information

DNA-
associated

DNA methylation Histones;
DNA-binding proteins 
(Transcription factors*)

RNA 
(e.g., R loops)

• Nucleosome 
positioning; 

• chromatin 
accessibility; 

• 3D genome 
organization; 
…

Chromatin-
associated

Histone modifications: 
methylations, 
acetylations, …

Histone variants; 
Chromatin regulators: 
Histone modifying 
enzymes: writer, 
readers, erasers;
Chromatin remodeling 
complexes

Non-coding RNAs
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Unit 2: Epigenomics
• 1. Transcriptional regulation, DNA sequence motif finding
• 2. ChIP-seq: Measuring chromatin epigenome, signal 

detection (TF binding sites)
• 3. ChIP-seq: Signal detection continued (histone 

modification domains, etc.)
• 4-6
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Transcriptional Regulation
DNA Sequence Motif Finding

March 24, 2022
Acknowledgements: Some materials are borrowed from 

Harvard STAT 115 course taught by X. Shirley Liu;
copyright of images from internet belongs to their respective owners.
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Outline
• Transcriptional regulation
• Sequence motif
• Motif representation: PWM
• Motif finding:

– Deterministic approach: Regular expression enumeration
– Probabilistic approach: Expectation-Maximization (E-M)
– Probabilistic approach: Gibbs sampling
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Transcription factors
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Many TFs exhibit tissue/cell-type-specific expression patterns

8

well-established roles in early embryonic-cell-fate specification
and/or roles in themaintenance and differentiation of specialized
cell types (Bürglin, 2011; Dunwell and Holland, 2016).

Across all other TF families, half (49%) are tissue specific,
providing a clue as to their specific physiological functions.

Higher-resolution data—e.g., from single-cell RNA-seq, which
can resolve the different cell types that comprise tissues—
will almost certainly lead to a more refined view of the associ-
ations between TFs, cell identity, and the genes regulated by
the TFs.

Figure 4. Functional Properties of the Human Transcription Factors
(A) RNA-seq gene expression profiles for 1,554 human TFs across 37 human tissues (from the Human Tissue Atlas version 17 [Uhlén et al., 2015]), normalized by
row and column. Tissues and TFs are arranged using hierarchical clustering by Pearson correlation. Mean expression level indicates the mean pre-normalization
mRNA expression level of each TF (in TPM) across all tissues in which the TF was expressed (TPMR 1). For an interactive version of this panel, see http://www.
cell.com/cell/9995.
(B) TF gene set over-representation for human disease phenotypes (Köhler et al., 2014). y axis indicates the significance of the size of the intersection between the
set of human TFs and the indicated gene set. Values indicate the number of TFs in the gene set.
(C) Diseases with GWAS signal (p < 5x10!8) located proximal to TF-encoding genes. Loci containing multiple variants were restricted to the single most strongly
associated variant, and subsequently expanded to incorporate variants in strong linkage disequilibrium (LD) (r2 > 0.8) with this variant using Plink (Purcell et al.,
2007). The full set of genetic variants and sources for each disease are provided in Tables S3 and S4. Each resulting variant was assigned to its nearest gene,
creating a gene set for each disease. For each gene set, the significance of its overlap with the list of human TFs was estimated using the hypergeometric
distribution. p values were corrected using Bonferroni’s method. Values indicate the number of TF-encoding loci associated with the given disease.

660 Cell 172, February 8, 2018

Lambert et al. Cell 2018



Transcription factors
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(legend on next page)
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Transcription factors

• Structure: Effector domain and DNA binding domain(s)
• Functional studies:

– Cell-type specific expression
– Binding DNA sequence motif
– Genome-wide binding sites
– Target genes
– Co-factors, etc.
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Central Dogma of Molecular Biology
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TRANSCRIPTION FACTORS



Entropy
• From statistical physics
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S = kB lnΩ

SB = −kB
∑

i

pi ln(pi)

(Boltzmann entropy)



Entropy
• Orderliness = negative entropy
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Erwin Schrödinger
1887–1961



Entropy
• Shannon entropy

Expectation of Information Content

Information Content:
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Claude Shannon
1916 – 2001

H(X) = −

∑

i

P(xi) log2 P(xi)

I(x) = − log2 P(x)



What is a motif?
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Motif Number 1
• "the most often-painted building in America"

Rockport, Massachusetts
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Sequence Motif
• What is a motif?

– A recurring pattern; a distinctive pattern that occurs repeatedly.

• What is a (biomolecular) sequence motif?
– A pattern common to a set of DNA, RNA, or protein sequences 

that share a common biological property, such as functioning as 
binding sites for a particular protein
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Sequence Motif Finding
• Computational motif finding:

– Input data: a set of DNA sequences
• e.g., upstream sequences of gene expression profile cluster 
• 20-1000 sequences, each 100-5000 bps long

– Output: enriched sequence patterns (motifs)
• Ultimate goals for biology:

– Which TFs are involved?
– What are their binding motifs and effects (enhance / repress gene expression)?
– Which genes are regulated by this TF? 
– Why is there disease when a TF goes wrong?
– Are there binding partner / competitor for a TF?
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Motif Representation
• Regular expression: Consensus CACAAAA

binary decision Degenerate CRCAAAW
A/TA/G
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IUPAC



Motif Representation
• Position Weight Matrix (PWM)

– Position-Specific Scoring Matrix (PSSM)
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Pos  123456789
GAGGTAAAC
TCCGTAAGT
CAGGTTGGA
ACAGTCAGT
TAGGTCATT
TAGGTACTG
ATGGTAACT
CAGGTATAC
TGTGTGAGT
AAGGTAAGT



Position Weight Matrix (PWM)

• Graphic representation: Sequence Logo
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Ri = log2(4)−Hi

Hi = −

∑

b

fb,i × log2 fb,iweblogo.berkeley.edu
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PWM:

Sequence Logo:

• SeqLogo consists of stacks of symbols, 
one stack for each position in the 
sequence

• The overall height of the stack indicates 
the sequence conservation at that 
position (information content)

• The height of symbols within the stack 
indicates the relative frequency of 
nucleic acid at that position



Position Weight Matrix (PWM)

• Motif Matching Score: Likelihood Ratio Score
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S = log2
Pr(x from θm)

Pr(x from θ0)

G  A  G  G  T  A  A  A  C Score for GAGGTAAAC = log2

pmG ´ pmA ´ pmG ´ pmG ´ pmT ´ pmA ´ pmA ´ pmA ´ pmC

p0G ´ p0A ´ p0G ´ p0G ´ p0T ´ p0A ´ p0A ´ p0A ´ p0C

p0(A, C, G, T) = [0.28, 0.22, 0.22, 0.28]

Pr(x from θ) =
w∏

i=1

p(Xi|θ)



De Novo Sequence Motif Finding

• Goal: look for common sequence patterns enriched in the input 
data (compared to a background, e.g., genome)

• Deterministic approach: Regular expression enumeration
– Pattern driven approach
– Enumerate k-mers; check significance in dataset

• Probabilistic approaches: PWM update 
– Data driven approach, use data to refine motifs
– Expectation-Maximization (E-M) approach
– Gibbs Sampling

23



Regular Expression Enumeration

• Check over-representation for every w-mer
– Expected w occurrence in data

• Consider genome sequence + current data size
– Observed w occurrence in data
– Over-represented w is potential TF binding motif

• Suffix tree implementation of RE motif hits (e.g., WEEDER)
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Observed occurrence of w in the data

pw from 
genome background

size of sequence data

Expected occurrence of w in the data



Regular Expression Enumeration

• Exhaustive, guaranteed to find global optimum, and can find 
multiple motifs

• Not as flexible with base substitutions, long list of similar good 
motifs, and limited with motif width
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Probabilistic Approach

• Objects:
– seq: sequence data to search for motif
– q0: non-motif probability (genome background) parameters
– q : motif probability matrix parameters
– p: motif site locations

• Problem: P(q, p|seq, q0)
• Approach: alternately estimate

– p by P(p|q, seq, q0)
– q by P(q|p, seq, q0)
– E-M and Gibbs sampler differ in the estimation methods
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Expectation-Maximization: E Step
• E step:   p | q, seq, q0

TTGACGACTGCACGT
TTGAC LR1
TGACG LR2
GACGA LR3
ACGAC LR4
CGACT LR5
GACTG LR6
ACTGC LR7
CTGCA LR8
...

LR1 = likelihood ratio =
P(TTGAC|q )
P(TTGAC|q0)
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p0T ´ p0T ´ p0G ´ p0A ´ p0C
= 0.3 ´ 0.3 ´ 0.2 ´ 0.3 ´ 0.2



Expectation-Maximization
• E step:   p | q, seq, q0

TTGACGACTGCACGT
TTGAC LR1
TGACG LR2
GACGA LR3
ACGAC LR4
CGACT LR5
GACTG LR6
ACTGC LR7
CTGCA LR8
...

• M step:   q | p, seq, q0

LR1 ´ TTGAC

LR2 ´ TGACG

LR3 ´ GACGA
LR4 ´ ACGAC
...

• Scale ACGT at each position, q
reflects weighted average of p
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Expectation-Maximization: M Step
TTGACGACTGCACGT

0.8 ´ TTGAC

0.2 ´ TGACG
0.6 ´ GACGA

0.5 ´ ACGAC

0.3 ´ CGACT

0.7 ´ GACTG

0.4 ´ ACTGC
0.1 ´ CTGCA

0.9 ´ TGCAC
…
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Obtain updated q



Expectation-Maximization
• E step:   p | q, seq, q0

TTGACGACTGCACGT
TTGAC LR1
TGACG LR2
GACGA LR3
ACGAC LR4
CGACT LR5
GACTG LR6
ACTGC LR7
CTGCA LR8
...

• M step:   q | p, seq, q0
LR1 ´ TTGAC

LR2 ´ TGACG
LR3 ´ GACGA

LR4 ´ ACGAC

...

• Iterate until q does not improve.
• Representative method: 

MEME
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Summary
• Epigenome
• Entropy
• Motif
• Motif representation: PWM
• Motif finding: E-M
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