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ChiIP-seq: To determine the locations in the genome
associating with a protein factor
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Chromatin ImmunoPrecipitation (ChlP)
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Protein-DNA crosslinking with formaldehyde (for TF)




Chop the chromatin using sonication (TF) or micrococal
nuclease (MNase) digestion (histone)
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Specific factor-targeting antibody
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Immunoprecipitation
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DNA purification

11



PCR amplification



High-throughput sequencing (lllumina)
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Biochemistry

Some history: UV crosslinking (1984)

Detecting protein—DNA interactions in vive: Distribution of RNA
polymerase on specific bacterial genes

(UY cross-linking/gene regulation/leucine operon/attenuation)

DaviDp S. GILMOUR AND JOHN T. Lis

Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853

Communicated by Norman Davidson, March 23, 1984

ABSTRACT We present an approach for determining the
in vivo distribution of a protein on specific segments of chro-
mosomal DNA. First, proteins are joined covalently to DNA by
irradiating intact cells with UV light. Second, these cells are
disrupted in detergent, and a specific protein is immunopreci-
pitated from the lysate. Third, the DNA that is covalently at-
tached to the protein in the precipitate is purified and assayed
by hybridization. To test this approach, we examine the cross-
linking in Escherichia coli of RNA polymerase to a constitu-
tively expressed, A cI gene, and to the uninduced and isopropyl
B-p-thiogalactoside (IPTG)-induced lac operon. As expected,
the recovery of the constitutively expressed gene in the immu-
noprecipitate is dependent on the irradiation of cells and on
the addition of RNA polymerase antiserum. The recovery of
the lac operon DNA also requires transcriptional activation
with IPTG prior to the cross-linking step. After these initial
tests, we examine the distribution of RNA polymerase on the
leucine operon of Salmonella in wild-type, attenuator mutant,
and promoter mutant strains. Our in vivo data are in complete
agreement with the predictions of the attenuation model of
regulation. From these and other experiments, we discuss the
resolution, sensitivity, and generality of these methods.

RNA polymerase molecules can be associated with an ac-
tively transcribed gene, thereby enhancing the probability of
generating a cross-link. Third, since regulatory mutations or
chemical inducers can modulate the amount of RNA poly-
merase associated with a gene, the specificity of the interac-
tions detected by our procedure can be rigorously tested.
Moreover, the transcription level of some genes will remain
unchanged, and these can serve as internal standards.

MATERIALS AND METHODS

Materials. Escherichia coli RN A polymerase had been pu-
rified as described (5). RNA polymerase antiserum was de-
rived from a rabbit that was immunized as described (6) ex-
cept 100 ug of purified RNA polymerase was used per injec-
tion. This antiserum immunoprecipitates the g and g’
subunits of both E. coli and Salmonella RNA polymerase.
Protein A Sepharose (Pharmacia) was stored at 4°C in 150
mM NaCl/50 mM Tris‘HCI, pH 8.0/1 mM EDTA, and was
recycled after use by extensively washing with 50 mM
NaHCO;/1% NaDodSO,.

All plasmid DNAs were maintained in E. coli HB101. Sev-
eral of the plasmids are described elsewhere: pBGP120 (7),
pKK3535 (8). oCV12 (9). and PUC13 (10). Plasmid nLRI was



Crosslinking + immunoprecipitation (1993

Cell, Vol. 75, 1187-1198, December 17, 1993, Copyright © 1993 by Cell Press

Mapping Polycomb-Repressed Domains
in the Bithorax Complex Using In Vivo
Formaldehyde Cross-Linked Chromatin

Valerio Orlando and Renato Paro
Zentrum fiir Molekulare Biologie
Universitat Heidelberg

Im Neuenheimer Feld 282

69120 Heidelberg

Federal Republic of Germany

Summary

The Polycomb group (Pc-G) proteins are responsible
for keeping developmental regulators, like homeotic
genes, stably and inheritably repressed during Dro-
sophila development. Several similarities to a protein
class involved in heterochromatin formation suggest
that the Pc-G exerts its function at the higher order
chromatin level. Here we have mapped the distribution
of the Pc protein in the homeotic bithorax complex
(BX-C) of Drosophila tissue culture cells. We have elab-
orated a method, based on the in vivo formaldehyde
cross-linking technique, that allows a substantial en-
richment for Pc-interacting sites by immunoprecipita-
tion of the cross-linked chromatin with anti-Pc antibod-
ies. We find that the Pc protein quantitatively covers
large regulatory regions of repressed BX-C genes.
Conversely, we find that the Abdominal-B gene is ac-
tive in these cells and the region devoid of any bound
Pc protein.

mined state, dispensing the cell from reproducing at every
generation the complexity of a particular regulatory cascade.

The Pc gene is the prototype member of the Pc-G. As
shown by polytene chromosome immunostainings, Pc en-
codes a nuclear protein associated with more than 100
loci in the genome, including the homeotic clusters of the
Antennapedia (Antp) complex and bithorax complex
(BX-C) (Zink and Paro, 1989). The Pc protein was not found
to bind DNA sequence specifically in vitro, not even to
sequences for which the protein is otherwise targeted in
vivo, such as the Antp promoter (Zink and Paro, 1989).
Other members of the Pc-G, like polyhomeotic and Poste-
rior sex combs, have also been characterized, and al-
though potential DNA-binding domains are present, these
proteins, too, fail to bind DNA specifically in vitro (De Cam-
illis et al., 1992; Rastelli et al., 1993). Thus, the ability of
this class of proteins to bind specific genomic regions in
vivo might involve the formation of higher order nucleopro-
tein complexes, a level of complexity not easily reproduc-
ible in vitro. Indeed, cytological and biochemical analysis
showed that some Pc-G proteins share the same binding
sites on polytene chromosomes and that they are part of
a large multimeric complex (Franke et al., 1992; Rastelli
et al., 1993).

An important feature of Pc is the presence of a highly
conserved protein motif spanning over 48 amino acids at
the amino-terminal end, called the chromodomain (Paro
and Hogness, 1991). This protein domain is also found in
the heterochromatin-associated protein HP1, encoded by
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ChIP-chip (2000)

REPORTS

Genome-Wide Location and
Function of DNA Binding
Proteins

Bing Ren,’* Francois Robert,’ John ). Wyrick,-2*
Oscar Aparicio,>* Ezra G. Jennings,"? Itamar Simon,’
Julia Zeitlinger," J6rg Schreiber,’ Nancy Hannett,’
Elenita Kanin,” Thomas L. Volkert,” Christopher ). Wilson,”
Stephen P. Bell,?? Richard A. Young'-?}

Understanding how DNA binding proteins control global gene expression and
chromosomal maintenance requires knowledge of the chromosomal locations
at which these proteins function in vivo. We developed a microarray method
that reveals the genome-wide location of DNA-bound proteins and used this
method to monitor binding of gene-specific transcription activators in yeast.
A combination of location and expression profiles was used to identify genes
whose expression is directly controlled by Gal4 and Ste12 as cells respond to
changes in carbon source and mating pheromone, respectively. The results
identify pathways that are coordinately regulated by each of the two activators
and reveal previously unknown functions for Gal4 and Ste12. Genome-wide
location analysis will facilitate investigation of gene regulatory networks, gene
function, and genome maintenance.
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Cell, Vol. 116, 499-509, February 20, 2004, Copyright ©2004 by Cell Press

Unbiased chromosomal coverage by tiling array

Unbiased Mapping of Transcription Factor Binding
Sites along Human Chromosomes 21 and 22 Points
to Widespread Regulation of Noncoding RNAs

Simon Cawley,'® Stefan Bekiranov,'®
Huck H. Ng,%3* Philipp Kapranov,'
Edward A. Sekinger,? Dione Kampa,'
Antonio Piccolboni,' Victor Sementchenko,’
Jill Cheng,' Alan J. Williams,' Raymond Wheeler,'
Brant Wong,' Jorg Drenkow,' Mark Yamanaka,'
Sandeep Patel,' Shane Brubaker,’ Hari Tammana,’
Gregg Helt,' Kevin Struhl,>*
and Thomas R. Gingeras'*
TAffymetrix
3380 Central Expressway
Santa Clara, California 95051
?Deptartment of Biological Chemistry
and Molecular Pharmacology
Harvard Medical School
Boston, Massachusetts 02115
SDepartment of Biological Sciences
National University of Singapore
Singapore 117543
*Genome Institute of Singapore
Singapore 138672

Summary

Using high-density oligonucleotide arrays represent-
ing essentially all nonrepetitive sequences on human
chromosomes 21 and 22, we map the binding sites in
vivo for three DNA binding transcription factors, Sp1,
cMyc, and p53, in an unbiased manner. This mapping
reveals an unexpectedly large number of transcription
factor binding site (TFBS) regions, with a minimal esti-
mate of 12,000 for Sp1, 25,000 for cMyc, and 1600 for
p53 when extrapolated to the full genome. Only 22%
of these TFBS regions are located at the 5’ termini of
protein-coding genes while 36% lie within or immedi-
ately 3' to well-characterized genes and are signifi-
cantly correlated with noncoding RNAs. A significant
number of these noncoding RNAs are regulated in
response to retinoic acid, and overlapping pairs of
protein-coding and noncoding RNAs are often coregu-
lated. Thus, the human genome contains roughly com-
parable numbers of protein-coding and noncoding
genes that are bound by common transcription factors
and regulated by common environmental signals.



ChiP-seq (2007)

High-Resolution Profiling of Histone
Methylations in the Human Genome

Artem Barski,"® Suresh Cuddapah,’-® Kairong Cui,"*® Tae-Young Roh,-® Dustin E. Schones,® Zhibin Wang,'"®

Gang Wei,"® louri Chepelev,? and Keji Zhao"*

" Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
2 Department of Human Genetics, Gonda Neuroscience and Genetics Research Center, University of California, Los Angeles,

Los Angeles, CA 90095, USA

3These authors contributed equally to this work and are listed alphabetically.

*Correspondence: zhaok@nhlbi.nih.gov
DOI 10.1016/j.cell.2007.05.009

SUMMARY

Histone modifications are implicated in influ-
encing gene expression. We have generated
high-resolution maps for the genome-wide
distribution of 20 histone lysine and arginine
methylations as well as histone variant H2A.Z,
RNA polymerase Il, and the insulator binding
protein CTCF across the human genome using
the Solexa 1G sequencing technology. Typical
patterns of histone methylations exhibited
at promoters, insulators, enhancers, and tran-
scribed regions are identified. The mono-
methylations of H3K27, H3K9, H4K20, H3K79,
and H2BK5 are all linked to gene activation,
whereas trimethylations of H3K27, H3K9, and
H3K79 are linked to repression. H2A.Z associ-
ates with functional regulatory elements, and
CTCF marks boundaries of histone methylation
domains. Chromosome banding patterns are
correlated with unique patterns of histone mod-
ifications. Chromosome breakpoints detected
in T cell cancers frequently reside in chromatin
regions associated with H3K4 methylations.
Our data provide new insights into the function
of histone methylation and chromatin organiza-
tion in genome function.

biological processes. Among the various modifications,
histone methylations at lysine and arginine residues are
relatively stable and are therefore considered potential
marks for carrying the epigenetic information that is stable
through cell divisions. Indeed, enzymes that catalyze the
methylation reaction have been implicated in playing crit-
ical roles in development and pathological processes.

Remarkable progress has been made during the past
few years in the characterization of histone modifications
on a genome-wide scale. The main driving force has
been the development and improvement of the “ChlIP-
on-chip” technique by combining chromatin immunopre-
cipitation (ChIP) and DNA-microarray analysis (chip). With
almost complete coverage of the yeast genome on DNA
microarrays, its histone modification patterns have been
extensively studied. The general picture emerging from
these studies is that promoter regions of active genes
have reduced nucleosome occupancy and elevated his-
tone acetylation (Bernstein et al., 2002, 2004; Lee et al.,
2004; Liu et al., 2005; Pokholok et al., 2005; Sekinger
et al., 2005; Yuan et al., 2005). High levels of H3K4me1,
H3K4me2, and H3K4me3 are detected surrounding tran-
scription start sites (TSSs), whereas H3K36me3 peaks
near the 3’ end of genes.

Significant progress has also been made in characteriz-
ing global levels of histone modifications in mammals.
Several large-scale studies have revealed interesting in-
sights into the complex relationship between gene ex-
pression and histone modifications. Generally, high levels
of histone acetviation and H3K4 methvlation are detected

Genome-Wide Mapping of in Vivo
Protein-DNA Interactions

David S. Johnson,** Ali Mortazavi,?* Richard M. Myers,*t Barbara Wold>>t

In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a
gene network scaffold. To map these protein-DNA interactions comprehensively across entire
mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq)
based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then
used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for
repressor element—1 silencing transcription factor) to 1946 locations in the human genome. The
data display sharp resolution of binding position [£50 base pairs (bp)], which facilitated our
finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq

data also have high sensitivity and specificity [ROC (receiver operator characteristic)

area > 0.96] and statistical confidence (P < 107*), properties that were important for inferring new
candidate interactions. These include key transcription factors in the gene network that regulates

pancreatic islet cell development.

Ithough much is known about transcrip-
Ation factor binding and action at specific

genes, far less is known about the com-
position and function of entire factor-DNA
interactomes, especially for organisms with large
genomes. Now that human, mouse, and other
large genomes have been sequenced, it is
possible, in principle, to measure how any
transcription factor is deployed across the entire
genome for a given cell type and physiological
condition. Such measurements are important for
systems-level studies because they provide a
global map of candidate gene network input
connections. These direct physical interactions
between transcription factors or cofactors and the

"Department of Genetics, Stanford University School of
Medicine, Stanford, CA, 94305-5120, USA. 2Biulogy
Division, California Institute of Technology, Pasadena, CA
91125, USA. >California Institute of Technology Beckman
Institute, Pasadena, CA 91125, USA.

*These authors contributed equally to this work.

1To whom correspondence should be addressed. E-mail:
woldb@its.caltech.edu (B.W.); myers@shgc.stanford.edu
(R.M.M.)

chromosome can be detected by chromatin
immunoprecipitation (ChIP) (/). In ChIP ex-
periments, an immune reagent specific for a
DNA binding factor is used to enrich target DNA
sites to which the factor was bound in the living
cell. The enriched DNA sites are then identified
and quantified.

For the gigabase-size genomes of vertebrates,
it has been difficult to make ChIP measurements
that combine high accuracy, whole-genome com-
pleteness, and high binding-site resolution. These
data-quality and depth issues dictate whether pri-
mary gene network structure can be inferred with
reasonable certainty and comprehensiveness, and
how effectively the data can be used to discover
binding-site motifs by computational methods.
For these purposes, statistical robustness, sam-
pling depth across the genome, absolute signal
and signal-to-noise ratio must be good enough
to detect nearly all in vivo binding locations for
a regulator with minimal inclusion of false-
positives. A further challenge in genomes large
or small is to map factor-binding sites with high
positional resolution. In addition to making com-

putational discovery of binding motifs feasible,
this dictates the quality of regulatory site anno-
tation relative to other gene anatomy landmarks,
such as transcription start sites, enhancers, introns
and exons, and conserved noncoding features
(2). Finally, if high-quality protein-DNA inter-
actome measurements can be performed rou-
tinely and at reasonable cost, it will open the
way to detailed studies of interactome dynam-
ics in response to specific signaling stimuli or
genetic mutations. To address these issues, we
turned to ultrahigh-throughput DNA sequenc-
ing to gain sampling power and applied size
selection on immuno-enriched DNA to enhance
positional resolution.

The ChIPSeq assay shown here differs
from other large-scale ChIP methods such as
ChlIPArray, also called ChIPchip (/); ChIPSAGE
(SACO) (3); or ChIPPet (4) in design, data
produced, and cost. The design is simple (Fig.
1A) and, unlike SACO or ChIPPet, it involves no
plasmid library construction. Unlike microarray
assays, the vast majority of single-copy sites in
the genome is accessible for ChIPSeq assay (3),
rather than a subset selected to be array features.
For example, to sample with similar complete-
ness by an Affymetrix-style microarray design, a
nucleotide-by-nucleotide sliding window design
of roughly 1 billion features per array would be
needed for the nonrepeat portion of the human
genome. In addition, ChIPSeq counts sequences
and so avoids constraints imposed by array
hybridization chemistry, such as base composition
constraints related to T}, the temperature at which
50% of double-stranded DNA or DNA-RNA
hybrids is denatured; cross-hybridization; and
secondary structure interference. Finally, ChIPSeq
is feasible for any sequenced genome, rather than
being restricted to species for which whole-
genome tiling arrays have been produced.

ChIPSeq illustrates the power of new se-
quencing platforms, such as those from Solexa/
Illumina and 454, to perform sequence census
counting assays. The generic task in these appli-
cations is to identify and quantify the molecular
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Translational and rotational settings of H2A.Z
nucleosomes across the Saccharomyces

cerevisiae genome

Istvan Albert!, Travis N. Mavrich"? Lynn P. Tomsho', Ji Qi!, Sara J. Zanton"?, Stephan C. Schuster!

& B. Franklin Pugh'?

1 build

The nucl is the fund ing block of eukaryotic
chromosomes. Access to genetic information encoded in chromo-
somes is dependent on the position of nucleosomes along the DNA.
Alternative locations just a few nucleotides apart can have pro-
found effects on gene expression'. Yet the nucleosomal context in
which chromosomal and gene regulatory elements reside remains
ill-defined on a genomic scale. Here we sequence the DNA of
322,000 individual Saccharomyces cerevisiae nucleosomes, con-
taining the histone variant H2A.Z, to provide a comprehensive
map of H2A.Z nucleosomes in functionally important regions.
With a median 4-base-pair resolution, we identify new and estab-
lished signatures of nucleosome positioning. A single predominant
rotational setting and multiple translational settings are evident.
Chromosomal elements, ranging from telomeres to centromeres
and transcriptional units, are found to possess characteristic nu-
cleosomal architecture that may be important for their function.
Pro regulatory el s, including transcription factor bind-
ing sites and transcriptional start sites, show topological relation-
ships with nucleosomes, such that transcription factor binding
sites tend to be rotationally exposed on the nucleosome surface
near its border. Transcriptional start sites tended to reside about
one helical turn inside the nucleosome border. These findings
reveal an intimate relationship between chromatin architecture
and the underlying DNA sequence it regulates.

Chromatin is composed of repeating units of nucleosomes in which
~147base pairs (bp) of DNA is wrapped ~1.7 times around the

exterior of a histone protein complex®. A nucleosome has two fun-
damental relationships with its DNA’. A translational setting defines a
nucleosomal midpoint relative to a given DNA locus. A rotational
setting defines the orientation of DNA helix on the histone surface.
Thus, DNA regulatory elements may reside in linker regions between
nucleosomes or along the nucleosome surface, where they may face
inward (potentially inaccessible) or outward (potentially accessible).
Recent discoveries of nucleosome positioning sequences throughout
the S. cerevisiae (yeast) genome suggest that nucleosome locations are
partly defined by the underlying DNA sequence®’. Indeed, a tendency
of AA/TT dinucleotides to recur in 10-bp intervals and in counter-
phase with GC dinucleotides generates a curved DNA structure that
favours nucleosome formation’. Genome-wide maps of nucleosome
locations have been generated®’, but not at a resolution that would
define translational and rotational settings. To acquire a better under-
standing of how genes are regulated by nucleosome positioning,
we isolated and sequenced H2A.Z-containing nucleosomes from S.
cerevisiae. Such nucleosomes are enriched at promoter regions®"!, and
thus maximum coverage of relevant regions can be achieved with
fewer sequencing runs. With this high resolution map we sought to
address the following questions: (1) what are the DNA signatures of
nucleosome positioning in vivo? (2) How many translational and
rotational settings do nucleosomes occupy? (3) Do chromosomal
elements possess specific chromatin architecture? (4) What is the
topological relationship between the location of promoter elements
and the rotational and translational setting of nucleosomes?
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Figure 1| Distribution of H2A.Z nucleosomal DNA at an arbitrary region of
the yeast genome. Any region of the genome can be viewed in this way at
http://nucl sysbio.bx.psu.edu. An enlarged view of a peak is shown
in the inset, where each vertical bar corresponds to the number of

YAL024C YAL023C ~ YAL022C  YAL021C YAL020C

sequencing reads located at individual chromosomal coordinates. The
locations of ORFs are shown below the peaks. Additional browser shots are
shown in Supplementary Fig. 1.
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ChIP-seq has become a predominant method for profiling
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ChlIP-seq data analysis

Method

Model-based Analysis of ChIP-Seq (MACS)
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Abstract

We present Model-based Analysis of ChlP-Seq data, MACS, which analyzes data generated by short
read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of
ChlP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also
uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for
more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms,
and is freely available.

Background tional Sanger sequencing methods. Technologies such as Illu-
The determination of the 'cistrome’, the genome-wide set of  mina's Solexa or Applied Biosystems' SOLiD™ have made
in vivo cis-elements bound by trans-factors [1], is necessary ~ ChIP-Seq a practical and potentially superior alternative to
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Data and text mining

A clustering approach for identification of enriched
domains from histone modification ChiP-Seq data
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ABSTRACT
Motivation: Chromatin states are the key to gene regulation and
cell identity. Chromatin immunoprecipitation (ChIP) coupled with
high-throughput sequencing (ChIP-Seq) is increasingly being used
to map epigenetic states across genomes of diverse species.
Chromatin modification profiles are frequently noisy and diffuse,
spanning regions ranging from several nucleosomes to large domains
of multiple genes. Much of the early work on the identification
of ChIP-enriched regions for ChIP-Seq data has focused on
identifying localized regions, such as transcription factor binding
sites. Bioinformatic tools to identify diffuse domains of ChlP-enriched
regions have been lacking.
Results: Based on the biological observation that histone
modifications tend to cluster to form domains, we present a method
that identifies spatial clusters of signals unlikely to appear by
chance. This method pools together enrichment information from
neighboring nucleosomes to increase sensitivity and specificity.
By using genomic-scale analysis, as well as the examination of
loci with validated epigenetic states, we demonstrate that this
method outperforms existing methods in the identification of ChIP-
enriched signals for histone modification profiles. We demonstrate
the application of this unbiased method in important issues in
ChIP-Seq data analysis, such as data normalization for quantitative
comparison of levels of epigenetic modifications across cell types
and growth conditions.
Availability: http://home.gwu.edu/~wpeng/Software.htm
Contact: wpeng@gwu.edu

y infor i Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Covalent modifications of chromatin, including DNA methylation
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high-throughput massively parallel sequencing technologies (Barski
et al., 2007; Mikkelsen et al., 2007). ChIP-Seq combines chromatin
immunoprecipitation (ChIP) with high-throughput sequencing to
map genome-wide chromatin modification profiles and transcription
factor (TF) binding sites. It is characterized by high resolution, a
quantitative nature, cost effectiveness and no complication due to
probe hybridization as encountered in ChIP-chip assays (Schones
and Zhao, 2008). A large amount of data has recently been generated
using the ChIP-Seq technique, and these datasets call for new
analysis algorithms.

Binding of TFs is mainly governed by their sequence specificity
and therefore is typically associated with very localized ChIP-Seq
signals in the genome. A number of algorithms have been developed
to find the exact locations of TF binding sites from ChIP-Seq
data (Chen er al., 2008; Fejes et al., 2008; Ji et al., 2008; Johnson
et al., 2007; Jothi et al., 2008; Kharchenko et al., 2008; Nix et al.,
2008; Rozowsky et al., 2009; Valouev et al., 2008; Zhang et al.,
2008a). In contrast, the signals for histone modifications, histone
variants and histone-modifying enzymes are usually diffuse and
lack of well-defined peaks, spanning from several nucleosomes to
large domains encompassing multiple genes (Barski et al., 2007;
Pauler et al., 2009; Wang et al., 2008; Wen et al., 2009) (see,
e.g. Figure S1). The detection of diffuse signals often suffers from
high noise level and lack of saturation in sequencing coverage.
These generally weak signals render approaches seeking strong local
enrichment, such as those peak-finding algorithms used in finding
TF binding sites, inadequate.

Many modification marks are known to form broad
domains (Barski et al., 2007; Wang et al., 2008). This is believed
to be helpful in stabilizing the chromatin state and propagating
such states through cell division robustly (Bernstein et al., 2007).
A well-studied case is the trimethylation of histone H3 lysine 9
(H3K9me3). H3K9me3 recruits HP1 via its chromodomain. HP1
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ChIP-seq data analysis overview
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@ILLUMINA-8879DC:231:KK:3:1:1070:945 1:Y:0:
NNNAATACAGTCAGAAACATATCATATTGGAGAATA

@ILLUMINA-8879DC:231:KK:3:1:1153:945 1:Y:0:
NNNAAGCACACAGAAGATAACTAAACAATCAAGTAG

——-—--~\
@ILLUMINA-8879DC:231:KK:3:1:1222:945 1:Y:0: =2 ’
NNNAAGGGTCTTGAGAAGAAATCATTCTGGATGGCA

@ILLUMINA-8879DC:231:KK:3:1:1304:939 1:Y:0: .
NNNCCAGGCTCCCGCGATTCTCCTGCCTCAGCTTCT U

@ILLUMINA-8879DC:231:KK:3:1:1354:945 1:Y:0:
NNNCTCTTCCTTAGCTAAACTTTCAACTAAGCCAAA

@ILLUMINA-8879DC:231:KK:3:1:1411:932 1:Y:0:
NNNGTAGGACCATTGGCGTTGCGACACAAAAAATTT

@ILLUMINA-8879DC:231:KK:3:1:1496:937 1:Y:0:
NNNTTCATCGGGTTGAGAGTCCCCTTGTTGCATGCA
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ChlIP-seq data analysis goals

Where in the genome do these sequence reads come from? - Sequence
alignment and quality control

What does the enrichment of sequences mean? - Peak calling
What can we learn from these data? — Downstream analysis and integration




Experimental procedure

Biology

T downstream analysis/integration

¢ Immunoprecipitation Peaks (bed)

A )
O A

/)
] eak callin
7 P g

‘ DNA purification

Pile-up for visualization
(bedGraph, wig, bigwig) MACS/
SICER

‘ End repair, adaptor ligation

== Non-redundant reads (sam/bam/bed)
el

¢ Cluster generation
T redundancy assessment

I m Mapped reads (sam/bam/bed) -

T alignment (bowtie2, BWA)

~

_— P » Raw sequence reads (fastq)

Computational analysis




 fastq data file:

Data formats

@SRR3728822.1 97ZZTR1:422:C57C3ACXX:7:1101:1249:1883/1
NCAAGACCAGTGTCATGAAGCTTTCTCCCTCTTCTAGGAGTTTTACAGCTC

+

#11ADDFFFBFDHGGIJIJJJIEIIJJGHGJFIIHCEHHE?DFHGFHIIJE
@SRR3728822.2 97ZZTR1:422:C57C3ACXX:7:1101:1461:1902/1
NGATTCATAGCTGAATTCTACCAGATGTACAAAGAAGAGCTAGTACCATTA

+

#1=BDFFFHHHHHJJJJIJJJJJJJIJIJIJIIJIIIJIJIIIIGIIJHGIIJIIC
@SRR3728822.3 97ZZTR1:422:C57C3ACXX:7:1101:1479:1943/1
TGAAGATGGCTGAGAACTCCTTAACAGGCAAAATAGGTTTTGTTGGCCGGG

+

CeQFFFFFGHHGGJJJIJJJJJIJJJJIIGIFGIJIJJFGHIIIJJIIJJIIIG
@SRR3728822.4 97ZZTR1:422:C57C3ACXX:7:1101:1287:1958/1
ATATGAACAAACCTTACCTCAGTGGATTCTCAGAACAACCTCTTGAGGTAT

+

CCCFFFFFGHGHHJJIJJJJJJHIJJIJIJIIJIIJGIJJIIIGHGIJJJIGIJEFE
@SRR3728822.5 97ZZTR1:422:C57C3ACXX:7:1101:1515:1796/1
NATTGTGTTTTAGTCTGAAATATCATTTCATGTGGAGAATTCCTTACTGTC

+

#1=DDDFDHHHDHHIIJIIIIJJIHHGHIIGIIIIGIIGIJJIJJIIJJFF
@SRR3728822.6 97ZZTR1:422:C57C3ACXX:7:1101:1585:1807/1
NATAGTTAAAACGGTCTTTCTTTTTGAGATGGAATTTTGCTCTTGTTGCCC

+

#4=DFFFFHHHHHJGIIJJJJJJJJJIIHIJJJIJJIJIIIIIIIIIIITIT



Data formats

 BED:
chrll 10344210 10344260 255 0 —
chr4 76649430 76649480 255 0 +
chr3 77858754 77858804 255 0 +
chrle 62688333 62688383 255 0 +
chr22 33031123 33031173 255 0 -

« SAM/BAM: aligned sequencing reads

« bedGraph, Wig, bigWig: pile-up profiles for browser
visualization
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Sequencing quality assessment: fastqgc

Quality scores across all bases (Sanger / lllumina 1.9 encodin
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Sequencing quality assessment: fastqc

Position in read (bp)




ChiP-seq read mapping

« alignment of each sequence read: bowtie, BWA (Burrows—Wheeler Algorithm)

can map to multiple loci in the genome

{ cannot map to the reference genome

X
X

can map to a unique/best location in the genome

« Concepts/Terminology:

DNA fragment
Reads (tags)

v Cleavage (cut) site

Binding site

32



Redundancy control

 Non-redundant rate:

@
—_——— # non-redundant reads
R # mapped reads 8/12=66.7%
L -
- » PBC (PCR Bottleneck Coefficient):
4 3 1

# locations w/ 1 read

- (o)
2 # locations w/ reads 718 = 87.5%

# mapped reads: 1
# non-redundantreads: 8
# locations w/ reads: 8
# locations w/ 1 read: 7



DNA fragment size estimation

peak model (MACS)

Distance to the middle

cross-correlation (SICER)
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Cross-correlation

» Correlation between two strings with a displacement

Rxy(r)=) (X(t) = X) (Y(t+r)-Y)

t
 Auto-correlation: Cross-correlation with itself

Rxx(r) =) (X(t) = X) (X(t+7) - X)

t



Cross-correlation: example

Virginia COVID Cases vs. Death Virginia COVID19: Cross-correlation
—Virginia average = ——VA death average between Cases and Deaths
20000 250 2:5
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Auto-correlation: example

https://youtu.be/B7BFqgCXCqGU
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https://youtu.be/B7BFgCXCqGU

Auto-correlation: example
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Fig. 6 Cross-autocorrelation index according to the lag r varying from O to n. Left: Canon in D
Major by Pachelbel with T equal to a measure. Middle and right: first movement of the String
Quartet No. I in F major, Op. 18 by Beethoven with t equal to a measure

Cocco C & Bavaud F, 2015
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DNA fragment size estimation

Peak model (MACS)
For TF

Distance to the middle

0.055

0.05 |

0.045
0.04
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0.005

Cross-correlation (SICER)
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Retrieve DNA fragments

D * Full length retrieval (MACS)
-'—'-ll -Fd ---------- d Extend d
~ » Partial retrieval (sharpen the signal)
\ Do Shift d/2
R — — —.— Expand to d/2

R - Shift d/2



Pile up: Signal map generation

-
- - * bedGraph:
= -
-
‘1: chr4
g — chr4
—— chr4
— chr4
‘1’ chr4
= | °* wiggle:
— il — |
Tags f :
— |
; 10344200
Signal map i 10344250
10344300
10344350
A 10344400

10344200
10344250
10344300
10344350
10344400

track type=wiggle 0
variableStep chrom=chr4 span=50

5
10
25
15
8

10344250
10344300
10344350
10344400
10344450

_L A - » bigWig: indexed binary format

10
25
15
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ChlIP-seq: Study design

» Background Control: Input or IgG

— Input chromatin: sonicated/digested
chromatin without immunoprecipitation

— 1gG: “unspecific” immunoprecipitation

« Study Control:

— Control exp sample: ChIP + input
— Treated exp sample: ChlP + input

42



ChIP-seq: Peak calling

» Goal: Identify regions in the
genome enriched for

sequence reads: o &7
— Compared to genomic f
background - g
— Compared to input control £ *7 50
P &
R P T ¢ £ s B
L

I | | I | |
0 200 400 600 800 1,000

FoxA1 ChIP-Seq tag number / 10 kb
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MACS: model

Model-based Analysis for ChIP-Seq
Read distribution along the genome ~ Poisson distribution

(Agg = total tag / genome size)
_L A . —

Negative binomial distribution (MACS2)

ChIP-seq show local biases in the genome

— Chromatin and sequencing bias ChIP
— 200-300bp control windows have too few tags oy
— But can look further Control
. — 300bp
Dynamic A;yg, = \ I , 1kb
max(Agg, [Actris A1k Asic A1ok) N Y 5kb
e 10kb

B-H adjustment to correct for FDR
— p-value — g-value

Zhang et al, Genome Bio, 2008



MACS: Output interpretation

# tag size is determined as 51 bps —

: | > @ - -

# total tags in treatment: 19442622 - -

# tags after filtering in treatment: 17218335 — =

# maximum duplicate tags at the same position in treatment = 1 Qe e—
. — ——]

# Redundant rate in treatment: 0.11 ‘ ‘ -

d —_—

# d = 141 , |

# alternative fragment length(s) may be 141 bps

chr start end length abs summit pileup -logl0O(pvalue) fold enrichment -

logl0(gvalue) name

chrl 2603 2989 387 2870 18.00 6.68596 3.52825 3.66748 AR peak 1

chrl 138179 138371 193 138281 18.00 14.90779 7.9302111.47829 AR peak 2

chrl 36515 36714 200 36609 16.00 12.59143 7.05394 9.25447 AR peak 3

chrl 201091 201231 141 201114 10.00 7.582935.23859 4.50002 AR _peak 4

chrl 69373 69558 186 69452 18.00 9.61904 4.93737 6.41821 AR peak 5

O .
= ==
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Data Visualization

* bedGraph to bigWig

* macs2 output data
¢ IGV

IGV
Human (hg38) B w2 k) chr21:42,365,025-42,405,296  Go I <« » m o= ¢ | =R e
[ T
pl3 pl2 pll.2 pll.l qll.2 q21.1 q21.2 q21.3 q22.11 q22.12 q22.2 q22.3
- 39 kb -
42,370 kb 42,380 kb 42,390 kb 42,400 kb
| | | | |
[0-25]
AR .bw
sl 24 2] m .} =2 ._ ki & R ... l.u.i.L.l_l.h e e VA .L-lﬂ‘..l.n..l-- U YR TR T U TR PR TR
AR_peaks.narrowPeak
AR_peak_10317
Gene — H i 4 i H— H
4 tracks |[@lchr21:42,380,219 Il

[278M of 463Mm




Quality Control

FRIP (Fraction of Reads in Peaks) score
— 1-10% for TF is normal

Number of peaks
— Number of peaks with high fold enrlchment e. g 5 10, .

— 2000

Sequence conservation

aaaaaaaaaaaaaaaaaaaaaaaaaaa

Fraction of peaks within regulatory reglons
— 80%

Number of TF datasets
(2] (o2
o o
o o

N
o
o

N
o
o

o

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of TF peaks overlapped with DHS
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Biological interpretation: ChiP-seq captures a snapshot
of binding patterns from a cell population

« TF intrinsic property
« Binding activity
— « Cellular heterogeneity
v




Data flow and QC summary

QC measures

Raw

sequence gReEse

« Sequence quality (fastqc
eads q quality ( )

« Mapping quality (uniquely mapped ratio)

Aligned
reads

- BAM/BED » Library complexity (PBC)

Bowtie2/BWA

Reference genome « Fold enrichment, peaks

=116)i1 SR - bedGraph/Wig/bigWig

Peaks . BED  Signal/Noise (FRIP score)

MACS2

« Regulatory annotation
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Experimental procedure

Biology

T downstream analysis,
data integration

¢ Immunoprecipitation Peaks (bed)

A )
O A

/)
] eak callin
7 P g

‘ DNA purification

Pile-up for visualization
(bedGraph, wig, bigwig) macs/

”~ SICER

‘ End repair, adaptor ligation

== Non-redundant reads (sam/bam/bed)
el

¢ Cluster generation
T redundancy assessment

I m Mapped reads (sam/bam/bed) -

T alignment (bowtie2/BWA)

~

_— P » Raw sequence reads (fastq)

Computational analysis




