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ABSTRACT We present an approach for determining the
in vivo distribution of a protein on specific segments of chro-
mosomal DNA. First, proteins are joined covalently to DNA by
irradiating intact cells with UV light. Second, these cells are
disrupted in detergent, and a specific protein is immunopreci-
pitated from the lysate. Third, the DNA that is covalently at-
tached to the protein in the precipitate is purified and assayed
by hybridization. To test this approach, we examine the cross-
linking in Escherichia coli of RNA polymerase to a constitu-
tively expressed, X cI gene, and to the uninduced and isopropyl
13D-thiogalactoside (IPTG)-induced lac operon. As expected,
the recovery of the constitutively expressed gene in the immu-
noprecipitate is dependent on the irradiation of cells and on
the addition of RNA polymerase antiserum. The recovery of
the Mac operon DNA also requires transcriptional activation
with IPTG prior to the cross-linking step. After these initial
tests, we examine the distribution of RNA polymerase on the
leucine operon of Salmonella in wild-type, attenuator mutant,
and promoter mutant strains. Our in vivo data are in complete
agreement with the predictions of the attenuation model of
regulation. From these and other experiments, we discuss the
resolution, sensitivity, and generality of these methods.

The structure and function of chromosomes depend on a
constellation of specific interactions between proteins and
nucleic acids. In prokaryotes, many specific protein-DNA
interactions have been defined in vitro and some have been
supported by genetic analyses. In eukaryotes such interac-
tions have been defined primarily by in vitro analyses using
transcription systems and DNA binding assays (1-3). How-
ever, the biological implications of in vitro studies alone
must be interpreted cautiously, because the conditions for
detecting specific protein-DNA binding in vitro necessarily
differ from those within intact cells. For example, the natu-
ral state of the DNA substrate (e.g., superhelical density and
chemical modification) and the contribution of additional
DNA-binding proteins are either poorly defined or un-
known.
Here, we describe and test an approach designed to identi-

fy specific protein-DNA interactions occurring in vivo by
using UV light to generate cross-links between protein and
DNA. Specific protein-DNA complexes are isolated by
immunoprecipitation with antiserum to a specific protein.
The cross-linked DNA that is coprecipitated is isolated and
characterized by hybridization assays. Although the ap-
proach presented should be general, this paper focuses on
the association of RNA polymerase with specific bacterial
genes. We chose this model system to develop this approach
for several reasons. First, UV light has been shown to in-
duce cross-links between RNA polymerase and T7 promoter
DNA in vitro, and these adducts can be immunoprecipitated
with anti-RNA polymerase antibody (4). Second, many

RNA polymerase molecules can be associated with an ac-
tively transcribed gene, thereby enhancing the probability of
generating a cross-link. Third, since regulatory mutations or
chemical inducers can modulate the amount of RNA poly-
merase associated with a gene, the specificity of the interac-
tions detected by our procedure can be rigorously tested.
Moreover, the transcription level of some genes will remain
unchanged, and these can serve as internal standards.

MATERIALS AND METHODS
Materials. Escherichia coli RNA polymerase had been pu-

rified as described (5). RNA polymerase antiserum was de-
rived from a rabbit that was immunized as described (6) ex-
cept 100 gg of purified RNA polymerase was used per injec-
tion. This antiserum immunoprecipitates the p and f3'
subunits of both E. coli and Salmonella RNA polymerase.
Protein A Sepharose (Pharmacia) was stored at 40C in 150
mM NaCl/50 mM Tris-HCl, pH 8.0/1 mM EDTA, and was
recycled after use by extensively washing with 50 mM
NaHCO3/1% NaDodSO4.

All plasmid DNAs were maintained in E. coli HB101. Sev-
eral of the plasmids are described elsewhere: pBGP120 (7),
pKK3535 (8), pCV12 (9), and PUC13 (10). Plasmid pLRI was
identical to pKB252 (11) except that Inds repressor mutant
replaced the wild-type repressor. Subclones leu 7.1 and leu
14.7 were the 2.3-kilobase (kb) EcoRI/Sal I and the 2.9-kb
Sal I/EcoRI fragments, respectively, from pCV12 and were
cloned in pUC13. Plasmid DNAs were prepared using the
alkaline procedure as described (12). Restriction fragments
from pKK3535, pLRI, and pPBG120 were electroeluted
from agarose gels as described (13).

Isolation of Protein-DNA Adducts. Cells were chilled on
ice for 5 min prior to irradiation and then transferred to dish-
es in which the depth of the medium did not exceed 0.5 cm.
These dishes were maintained on ice while the samples were
irradiated from above with an inverted transilluminator
(UV products Chromato-Vue transilluminator Model C-61)
whose filter had been removed. The transilluminator was
maintained at a distance of 10 cm from the surface, providing
a light intensity of 4 x 104 erg/cm2_sec (measured with a
YSI-Kettering Model 65 Radiometer). Cells were collected
by centrifugation at 10,000 x g for 15 min. The cell pellet
was resuspended in 800 dul of 50 mM Tris-HCl, pH 7.4/10
mM EDTA, and transferred to a 1.5-ml microfuge tube; 80 A.l
of 20% sarkosyl was added, and each sample on ice was son-
icated with a microtip sonicator for four 30-sec periods inter-
spersed with periods of cooling. Sonication decreases the av-
erage DNA size to 600 base pairs (bp). At this time, samples
could be frozen at -70'C for 1 or 2 days with no noticeable
effect on subsequent procedures. Each sample was diluted
to 0.5% sarkosyl with 50 mM Tris-HCl, pH 7.4/10 mM
EDTA, and centrifuged 5 min in an Eppendorf microfuge to
remove insoluble material. Antiserum was added to the solu-

Abbreviations: IPTG, isopropyl /3-D-thiogalactoside; kb, kilo-
base(s); bp, base pair(s).
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Formaldehyde Cross-Linked Chromatin 
Valerlo Orlando and Renato Par0 
Zentrum fur Molekulare Biologie 
Universitat Heidelberg 
Im Neuenheimer Feld 282 
89120 Heidelberg 
Federal Republic of Germany 

Summary 

The Polycomb group (PC-G) proteins are responsible 
for keeping developmental regulators, like homeotic 
genes, stably and inheritably repressed during Dro- 
sophila development. Several similarities to a protein 
class involved In heterochromatln formation suggest 
that the PC-G exerts its function at the higher order 
chromatin level. Here we have mapped the distribution 
of the PC protein in the homeotic blthorax complex 
(BX-C) of Drosophila tlssueculturecells. We have elab- 
orated a method, based on the in vlvo formaldehyde 
cross-linking technique, that allows a substantial en- 
richment for PC-interacting sites by immunoprecipita- 
tion of the cross-linked chromatin with anti-PC antlbod- 
ies. We find that the PC protein quantitatively covers 
large regulatory regions of repressed 9X-C genes. 
Conversely, we find that the AbdominaCB gene is ac- 
tive in these cells and the region devoid of any bound 
PC protein. 

Introduction 

The process of pattern formation determine8 in each cell 
the fate it and its progenitors are going to follow in the 
developing body. In many organisms, homeotic genes 
were shown to play an important role in this process. 
Through their differential spatial distribution, they are re- 
sponsible for setting the identities of structures and ap- 
pendages along the anterior-posterior axis of the body 
(Lewis, 1978; reviewed by McGinnis and Krumlauf, 1992). 
To fulfill their determining function, homeotic genes need 
to be active throughout the developmental process and 
most probably also during adult life in those structures 
where cell proliferation continues beyond birth. Alterations 
in the activity of these genes at any time in development 
result in a change of fate, with the consequence of dra- 
matic perturbation8 of the body pattern. Mechanisms of 
“cellular memory” are therefore of fundamental impor- 
tance for a cell to remember and maintain its determined 
state. On the basis of their antipodal phenotypes, two 
classes of genes that are part of such a mechanism have 
been identified in Drosophila: the trithorax group (trx-G) 
(reviewed by Kennison, 1993) and the Polycomb group 
(PC-G) (reviewed by Paro, 1990). These two groups guar- 
antee the maintenance of, respectively, the active and the 
repressed state of the homeotic genes in the appropriate 
segments. They do not play any role in the establishment 
of a given expression pattern, but rather they fix a deter- 

mined state, dispensing the cell from reproducing at every 
generation the complexity of a particular regulatory cascade. 

The PC gene is the prototype member of the PC-G. As 
8hOWn by polytene chromosome immunostainings, PC en- 
codes a nuclear protein associated with more than 100 
loci in the genome, including the homeotic clusters of the 
Antennapedia (Antp) complex and bithorax complex 
(BX-C) (Zink and Paro, 1989). The PC protein was not found 
to bind DNA sequence specifically in vitro, not even to 
sequences for which the protein is otherwise targeted in 
vivo, such as the Antp promoter (Zink and Paro, 1989). 
Other member8 of the PC-G, like polyhomeotic and Poste- 
rior sex combs, have also been characterized, and al- 
though potential DNA-binding domains are present, these 
proteins, too, fail to bind DNA specifically in vitro (De Cam- 
illis et al., 1992; Rastelli et al., 1993). Thus, the ability of 
this class of proteins to bind specific genomic regions in 
vivo might involve the formation of higher order nucleopro- 
tein complexes, a level of complexity not easily reproduc- 
ible in vitro. Indeed, cytological and biochemical analysis 
showed that some PC-G proteins share the same binding 
sites on polytene chromosomes and that they are part of 
a large multimeric complex (Franke et al., 1992; Rastelli 
et al., 1993). 

An important feature of PC is the presence of a highly 
conserved protein motif spanning over 48 amino acid8 at 
the amino-terminal end, called the chromodomain (Paro 
and Hogness, 1991). This protein domain is also found in 
the heterochromatin-associated protein HP1 , encoded by 
the suppressor of position effect variegation, Su(vaf)205 
(Eissenberg et al., 1990). The identification of this con- 
served motif in both the PC protein and the HP1 protein was 
the first molecular link between aclassof genes involved in 
the stable repression of regulatory genes located in eu- 
chromatic regions (PC-G) and a class thought to be respon- 
sible for structuring and regulating heterochromatin (mod- 
ifiers of position effect variegation). This suggested that 
the mechanism of silencing the PC-regulated genes might 
be using heterochromatin-like structures (Paro and Hog- 
ness, 1991). Heterochromatin refers to regions of the in- 
terphasic nucleus at high chromatin density, with distinct 
physiological features such as late replication and little 
transcriptional activity. Position effect variegation is ob- 
served where heterochromatin exerts a strong cis-negative 
effect on euchromatic gene expression, i.e., when the 
chromosomal arrangement is altered by translocations or 
insertions (reviewed by Henikoff, 1990). This phenomenon 
seems to reflect the complex setup and architecture of 
heterochromatic structures. It has been proposed that the 
formation of heterochromatin relies on multimeric protein 
complexes that can, basically by a self-assembly process, 
package chromatin very tightly (Locke et al., 1988). Con- 
ceptually, this seems to be an attractive idea to explain the 
phenomenon of position effect variegation. Unfortunately, 
little molecular evidence has been accumulated so far to 
substantiate this view of heterochromatin formation, in 
particular how the dense packaging of large chromosomal 
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Understanding how DNA binding proteins control global gene expression and
chromosomal maintenance requires knowledge of the chromosomal locations
at which these proteins function in vivo. We developed a microarray method
that reveals the genome-wide location of DNA-bound proteins and used this
method to monitor binding of gene-specific transcription activators in yeast.
A combination of location and expression profiles was used to identify genes
whose expression is directly controlled by Gal4 and Ste12 as cells respond to
changes in carbon source and mating pheromone, respectively. The results
identify pathways that are coordinately regulated by each of the two activators
and reveal previously unknown functions for Gal4 and Ste12. Genome-wide
location analysis will facilitate investigation of gene regulatory networks, gene
function, and genome maintenance.

Many proteins bind to specific sites in the ge-
nome to regulate genome expression and main-
tenance. Transcriptional activators, for exam-
ple, bind to specific promoter sequences and
recruit chromatin modifying complexes and the
transcription apparatus to initiate RNA synthe-
sis (1–3). The reprogramming of gene expres-
sion that occurs as cells move through the cell
cycle, or when cells sense changes in their
environment, is effected in part by changes in
the DNA binding status of transcriptional acti-
vators. Distinct DNA binding proteins are also
associated with origins of DNA replication,
centromeres, telomeres, and other sites, where
they regulate chromosome replication, conden-
sation, cohesion, and other aspects of genome
maintenance (4, 5). Our understanding of these
proteins and their functions is limited by our
knowledge of their binding sites in the genome.

The genome-wide location analysis method
we have developed allows protein-DNA inter-
actions to be monitored across the entire yeast
genome (6). The method combines a modified
chromatin immunoprecipitation (ChIP) proce-
dure, which has been previously used to study
protein-DNA interactions at a small number of

specific DNA sites (7), with DNA microarray
analysis. Briefly, cells were fixed with formal-
dehyde, harvested, and disrupted by sonication.
The DNA fragments cross-linked to a protein of
interest were enriched by immunoprecipitation
with a specific antibody. After reversal of the
cross-links, the enriched DNA was amplified
and labeled with a fluorescent dye (Cy5) with
the use of ligation-mediated–polymerase chain
reaction (LM-PCR). A sample of DNA that
was not enriched by immunoprecipitation was
subjected to LM-PCR in the presence of a
different fluorophore (Cy3), and both immuno-
precipitation (IP)-enriched and -unenriched
pools of labeled DNA were hybridized to a
single DNA microarray containing all yeast
intergenic sequences (Fig. 1). A single-array
error model (8) was adopted to handle noise
associated with low-intensity spots and to per-
mit a confidence estimate for binding (P value).
When independent samples of 1 ng of genomic
DNA were amplified with the LM-PCR meth-
od, signals for greater than 99.8% of genes were
essentially identical within the error range (P
value !10!3). The IP-enriched/unenriched ra-
tio of fluorescence intensity obtained from three
independent experiments was used with a
weighted average analysis method to calculate
the relative binding of the protein of interest to
each sequence represented on the array.

To investigate the accuracy of the genome-
wide location analysis method, we used it to
identify sites bound by the transcriptional acti-
vator Gal4 in the yeast genome. Gal4 activates
genes necessary for galactose metabolism and
is among the best characterized transcriptional
activators (1, 9). We found 10 genes to be
bound by Gal4 (P value !0.001) and induced

in galactose using our analysis criteria (Fig.
2A). These included seven genes previously
reported to be regulated by Gal4 (GAL1, GAL2,
GAL3, GAL7, GAL10, GAL80, and GCY1). The
MTH1, PCL10, and FUR4 genes were also
bound by Gal4 and activated in galactose. Each
of these results was confirmed by conventional
ChIP analysis (Fig. 2B) (6), and MTH1,
PCL10, and FUR4 activation in galactose was
found to be dependent on Gal4 (Fig. 2C). Both
microarray and conventional ChIP showed that
Gal4 binds to GAL1, GAL2, GAL3, and GAL10
promoters under glucose and galactose condi-
tions, but the binding was generally weaker in

1Whitehead Institute for Biomedical Research, Nine
Cambridge Center, Cambridge, MA 02142, USA. 2De-
partment of Biology, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, USA. 3Howard Hughes
Medical Institute, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, USA. 4Program in Molec-
ular Biology University of Southern California, Los
Angeles, CA 90089–1340, USA. 5Corning, Inc., Corn-
ing, NY 14834, USA.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-
mail: young@wi.mit.edu

Fig. 1. The genome-wide location profiling
method. (A) Close-up of a scanned image of a
microarray containing DNA fragments repre-
senting 6361 intergenic regions of the yeast
genome. The arrow points to a spot where the
red intensity is over-represented, identifying a
region bound in vivo by the protein under
investigation. (B) Analysis of Cy3- and Cy5-
labeled DNA amplified from 1 ng of yeast
genomic DNA using a single-array error model
(8). The error model cutoffs for P values equal
to 10!3 and 10!5 are displayed. (C) Experimen-
tal design. For each factor, three independent
experiments were performed and each of the
three samples were analyzed individually using
a single-array error model. The average binding
ratio and associated P value from the triplicate
experiments were calculated using a weighted
average analysis method (6).
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Fig. 1. The genome-wide location profiling
method. (A) Close-up of a scanned image of a
microarray containing DNA fragments repre-
senting 6361 intergenic regions of the yeast
genome. The arrow points to a spot where the
red intensity is over-represented, identifying a
region bound in vivo by the protein under
investigation. (B) Analysis of Cy3- and Cy5-
labeled DNA amplified from 1 ng of yeast
genomic DNA using a single-array error model
(8). The error model cutoffs for P values equal
to 10!3 and 10!5 are displayed. (C) Experimen-
tal design. For each factor, three independent
experiments were performed and each of the
three samples were analyzed individually using
a single-array error model. The average binding
ratio and associated P value from the triplicate
experiments were calculated using a weighted
average analysis method (6).
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and assembled with the near completed draft of the
human genome (Lander et al., 2001; Venter et al., 2001).
Recently, there have been several reports based on em-
pirical and computational evidence indicating that the
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of unannotated RNAs as noncoding, although some ofing essentially all nonrepetitive sequences on human
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SUMMARY

Histone modifications are implicated in influ-
encing gene expression. We have generated
high-resolution maps for the genome-wide
distribution of 20 histone lysine and arginine
methylations as well as histone variant H2A.Z,
RNA polymerase II, and the insulator binding
protein CTCF across the human genome using
the Solexa 1G sequencing technology. Typical
patterns of histone methylations exhibited
at promoters, insulators, enhancers, and tran-
scribed regions are identified. The mono-
methylations of H3K27, H3K9, H4K20, H3K79,
and H2BK5 are all linked to gene activation,
whereas trimethylations of H3K27, H3K9, and
H3K79 are linked to repression. H2A.Z associ-
ates with functional regulatory elements, and
CTCF marks boundaries of histone methylation
domains. Chromosome banding patterns are
correlated with unique patterns of histone mod-
ifications. Chromosome breakpoints detected
in T cell cancers frequently reside in chromatin
regions associated with H3K4 methylations.
Our data provide new insights into the function
of histone methylation and chromatin organiza-
tion in genome function.

INTRODUCTION

Eukaryotic DNA is packaged into a chromatin structure
consisting of repeating nucleosomes formed by wrapping
146 base pairs of DNA around an octamer of four core his-
tones (H2A, H2B, H3, and H4). The histones, particularly
their N-terminal tails, are subject to a large number of
posttranslational modifications (Kouzarides, 2007). His-
tone modifications are implicated in influencing gene ex-
pression and genome function by establishing global
chromatin environments and orchestrating DNA-based

biological processes. Among the various modifications,
histone methylations at lysine and arginine residues are
relatively stable and are therefore considered potential
marks for carrying the epigenetic information that is stable
through cell divisions. Indeed, enzymes that catalyze the
methylation reaction have been implicated in playing crit-
ical roles in development and pathological processes.

Remarkable progress has been made during the past
few years in the characterization of histone modifications
on a genome-wide scale. The main driving force has
been the development and improvement of the ‘‘ChIP-
on-chip’’ technique by combining chromatin immunopre-
cipitation (ChIP) and DNA-microarray analysis (chip). With
almost complete coverage of the yeast genome on DNA
microarrays, its histone modification patterns have been
extensively studied. The general picture emerging from
these studies is that promoter regions of active genes
have reduced nucleosome occupancy and elevated his-
tone acetylation (Bernstein et al., 2002, 2004; Lee et al.,
2004; Liu et al., 2005; Pokholok et al., 2005; Sekinger
et al., 2005; Yuan et al., 2005). High levels of H3K4me1,
H3K4me2, and H3K4me3 are detected surrounding tran-
scription start sites (TSSs), whereas H3K36me3 peaks
near the 30 end of genes.

Significant progress has also been made in characteriz-
ing global levels of histone modifications in mammals.
Several large-scale studies have revealed interesting in-
sights into the complex relationship between gene ex-
pression and histone modifications. Generally, high levels
of histone acetylation and H3K4 methylation are detected
in promoter regions of active genes (Bernstein et al., 2005;
Kim et al., 2005; Roh et al., 2005, 2006), whereas elevated
levels of H3K27 methylation correlates with gene repres-
sion (Boyer et al., 2006; Lee et al., 2006; Roh et al.,
2006). In addition to the promoter regions, these modifica-
tions are also detected in intergenic regions as both
sharply localized peaks and wide-spread domains. The
H3 acetylation and H3K4me1 signals outside of promoter
regions have been correlated with functional enhancers in
various cell types (Heintzman et al., 2007; Roh et al., 2005;
Roh et al., 2007). The apparently opposite modifications,
H3K4me3 and H3K27me3, colocalize in regions termed
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sponse in cutaneous CHS. The finding that
topical application of D9-THC reduced allergic
inflammation points to the promising potential of
developing pharmacological treatments (24) with
the use of selective CB receptor agonists or
FAAH inhibitors.

References and Notes
1. S. Grabbe, T. Schwarz, Immunol. Today 19, 37 (1998).
2. T. Bisogno, A. Ligresti, V. Di Marzo, Pharmacol. Biochem.

Behav. 81, 224 (2005).
3. M. M. Ibrahim et al., Proc. Natl. Acad. Sci. U.S.A. 102,

3093 (2005).
4. M. Maccarrone et al., J. Biol. Chem. 278, 33896 (2003).
5. Materials and methods are available as supporting

material on Science Online.
6. A. Zimmer, A. M. Zimmer, A. G. Hohmann, M. Herkenham,

T. I. Bonner, Proc. Natl. Acad. Sci. U.S.A. 96, 5780 (1999).
7. N. E. Buckley et al., Eur. J. Pharmacol. 396, 141 (2000).
8. S. Werner et al., Science 266, 819 (1994).

9. J. Knop, R. Stremmer, C. Neumann, E. De Maeyer,
E. Macher, Nature 296, 757 (1982).

10. R. I. Lehrer, J. Hanifin, M. J. Cline, Nature 223, 78 (1969).
11. C. Nathan, Nat. Rev. Immunol. 6, 173 (2006).
12. S. Oka et al., J. Immunol. 177, 8796 (2006).
13. Y. Ueda, N. Miyagawa, T. Matsui, T. Kaya, H. Iwamura,

Eur. J. Pharmacol. 520, 164 (2005).
14. V. Di Marzo et al., J. Neurochem. 75, 2434 (2000).
15. S. Stander, M. Schmelz, D. Metze, T. Luger, R. Rukwied,

J. Dermatol. Sci. 38, 177 (2005).
16. C. A. Lunn et al., J. Pharmacol. Exp. Ther. 316, 780

(2006).
17. B. F. Cravatt et al., Proc. Natl. Acad. Sci. U.S.A. 98, 9371

(2001).
18. B. F. Cravatt et al., Proc. Natl. Acad. Sci. U.S.A. 101,

10821 (2004).
19. J. S. Lee, G. Katari, R. Sachidanandam, BMC Bioinformat.

6, 189 (2005).
20. M. Ashburner et al., Nat. Genet. 25, 25 (2000).
21. M. F. Bachmann, M. Kopf, B. J. Marsland, Nat. Rev.

Immunol. 6, 159 (2006).

22. A. de Paulis et al., Int. Arch. Allergy Immunol. 124, 146
(2001).

23. D. D. Taub et al., J. Clin. Invest. 95, 1370 (1995).
24. T. W. Klein, Nat. Rev. Immunol. 5, 400 (2005).
25. This work was supported by grants from the Deutsche

Forschungsgemeinschaft [SFB645 and GRK804 (to M.K.
and A.Z.) and Tu90/5-1 (to T.T.)], by a Bonfor stipend
to E.G., and a grant from Epitech S.r.l. to V.D.M. We
thank M. Krampert for her help in wound healing
experiments, L. Cristino for her help with
immunohistochemistry, and J. Essig, A. Zimmer,
E. Erxlebe, and I. Heim for technical assistance.

Supporting Online Material
www.sciencemag.org/cgi/content/full/316/5830/1494/DC1
Materials and Methods
Figs. S1 to S6
Tables S1 and S2
References

8 March 2007; accepted 4 May 2007
10.1126/science.1142265

Genome-Wide Mapping of in Vivo
Protein-DNA Interactions
David S. Johnson,1* Ali Mortazavi,2* Richard M. Myers,1† Barbara Wold2,3†

In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a
gene network scaffold. To map these protein-DNA interactions comprehensively across entire
mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq)
based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then
used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for
repressor element–1 silencing transcription factor) to 1946 locations in the human genome. The
data display sharp resolution of binding position [±50 base pairs (bp)], which facilitated our
finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq
data also have high sensitivity and specificity [ROC (receiver operator characteristic)
area ≥ 0.96] and statistical confidence (P < 10−4), properties that were important for inferring new
candidate interactions. These include key transcription factors in the gene network that regulates
pancreatic islet cell development.

Although much is known about transcrip-
tion factor binding and action at specific
genes, far less is known about the com-

position and function of entire factor-DNA
interactomes, especially for organisms with large
genomes. Now that human, mouse, and other
large genomes have been sequenced, it is
possible, in principle, to measure how any
transcription factor is deployed across the entire
genome for a given cell type and physiological
condition. Such measurements are important for
systems-level studies because they provide a
global map of candidate gene network input
connections. These direct physical interactions
between transcription factors or cofactors and the

chromosome can be detected by chromatin
immunoprecipitation (ChIP) (1). In ChIP ex-
periments, an immune reagent specific for a
DNA binding factor is used to enrich target DNA
sites to which the factor was bound in the living
cell. The enriched DNA sites are then identified
and quantified.

For the gigabase-size genomes of vertebrates,
it has been difficult to make ChIP measurements
that combine high accuracy, whole-genome com-
pleteness, and high binding-site resolution. These
data-quality and depth issues dictate whether pri-
mary gene network structure can be inferred with
reasonable certainty and comprehensiveness, and
how effectively the data can be used to discover
binding-site motifs by computational methods.
For these purposes, statistical robustness, sam-
pling depth across the genome, absolute signal
and signal-to-noise ratio must be good enough
to detect nearly all in vivo binding locations for
a regulator with minimal inclusion of false-
positives. A further challenge in genomes large
or small is to map factor-binding sites with high
positional resolution. In addition to making com-

putational discovery of binding motifs feasible,
this dictates the quality of regulatory site anno-
tation relative to other gene anatomy landmarks,
such as transcription start sites, enhancers, introns
and exons, and conserved noncoding features
(2). Finally, if high-quality protein-DNA inter-
actome measurements can be performed rou-
tinely and at reasonable cost, it will open the
way to detailed studies of interactome dynam-
ics in response to specific signaling stimuli or
genetic mutations. To address these issues, we
turned to ultrahigh-throughput DNA sequenc-
ing to gain sampling power and applied size
selection on immuno-enriched DNA to enhance
positional resolution.

The ChIPSeq assay shown here differs
from other large-scale ChIP methods such as
ChIPArray, also called ChIPchip (1); ChIPSAGE
(SACO) (3); or ChIPPet (4) in design, data
produced, and cost. The design is simple (Fig.
1A) and, unlike SACO or ChIPPet, it involves no
plasmid library construction. Unlike microarray
assays, the vast majority of single-copy sites in
the genome is accessible for ChIPSeq assay (5),
rather than a subset selected to be array features.
For example, to sample with similar complete-
ness by an Affymetrix-style microarray design, a
nucleotide-by-nucleotide sliding window design
of roughly 1 billion features per array would be
needed for the nonrepeat portion of the human
genome. In addition, ChIPSeq counts sequences
and so avoids constraints imposed by array
hybridization chemistry, such as base composition
constraints related to Tm, the temperature at which
50% of double-stranded DNA or DNA-RNA
hybrids is denatured; cross-hybridization; and
secondary structure interference. Finally, ChIPSeq
is feasible for any sequenced genome, rather than
being restricted to species for which whole-
genome tiling arrays have been produced.

ChIPSeq illustrates the power of new se-
quencing platforms, such as those from Solexa/
Illumina and 454, to perform sequence census
counting assays. The generic task in these appli-
cations is to identify and quantify the molecular
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Translational and rotational settings of H2A.Z
nucleosomes across the Saccharomyces
cerevisiae genome
Istvan Albert1, Travis N. Mavrich1,2, Lynn P. Tomsho1, Ji Qi1, Sara J. Zanton1,2, Stephan C. Schuster1

& B. Franklin Pugh1,2

The nucleosome is the fundamental building block of eukaryotic
chromosomes. Access to genetic information encoded in chromo-
somes is dependent on the position of nucleosomes along the DNA.
Alternative locations just a few nucleotides apart can have pro-
found effects on gene expression1. Yet the nucleosomal context in
which chromosomal and gene regulatory elements reside remains
ill-defined on a genomic scale. Here we sequence the DNA of
322,000 individual Saccharomyces cerevisiae nucleosomes, con-
taining the histone variant H2A.Z, to provide a comprehensive
map of H2A.Z nucleosomes in functionally important regions.
With a median 4-base-pair resolution, we identify new and estab-
lished signatures of nucleosome positioning. A single predominant
rotational setting and multiple translational settings are evident.
Chromosomal elements, ranging from telomeres to centromeres
and transcriptional units, are found to possess characteristic nu-
cleosomal architecture that may be important for their function.
Promoter regulatory elements, including transcription factor bind-
ing sites and transcriptional start sites, show topological relation-
ships with nucleosomes, such that transcription factor binding
sites tend to be rotationally exposed on the nucleosome surface
near its border. Transcriptional start sites tended to reside about
one helical turn inside the nucleosome border. These findings
reveal an intimate relationship between chromatin architecture
and the underlying DNA sequence it regulates.

Chromatin is composed of repeating units of nucleosomes in which
,147 base pairs (bp) of DNA is wrapped ,1.7 times around the

exterior of a histone protein complex2. A nucleosome has two fun-
damental relationships with its DNA3. A translational setting defines a
nucleosomal midpoint relative to a given DNA locus. A rotational
setting defines the orientation of DNA helix on the histone surface.
Thus, DNA regulatory elements may reside in linker regions between
nucleosomes or along the nucleosome surface, where they may face
inward (potentially inaccessible) or outward (potentially accessible).
Recent discoveries of nucleosome positioning sequences throughout
the S. cerevisiae (yeast) genome suggest that nucleosome locations are
partly defined by the underlying DNA sequence4,5. Indeed, a tendency
of AA/TT dinucleotides to recur in 10-bp intervals and in counter-
phase with GC dinucleotides generates a curved DNA structure that
favours nucleosome formation3. Genome-wide maps of nucleosome
locations have been generated6,7, but not at a resolution that would
define translational and rotational settings. To acquire a better under-
standing of how genes are regulated by nucleosome positioning,
we isolated and sequenced H2A.Z-containing nucleosomes from S.
cerevisiae. Such nucleosomes are enriched at promoter regions8–11, and
thus maximum coverage of relevant regions can be achieved with
fewer sequencing runs. With this high resolution map we sought to
address the following questions: (1) what are the DNA signatures of
nucleosome positioning in vivo? (2) How many translational and
rotational settings do nucleosomes occupy? (3) Do chromosomal
elements possess specific chromatin architecture? (4) What is the
topological relationship between the location of promoter elements
and the rotational and translational setting of nucleosomes?

1Center for Comparative Genomics and Bioinformatics, 2Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University
Park, Pennsylvania 16802, USA.
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Figure 1 | Distribution of H2A.Z nucleosomal DNA at an arbitrary region of
the yeast genome. Any region of the genome can be viewed in this way at
http://nucleosomes.sysbio.bx.psu.edu. An enlarged view of a peak is shown
in the inset, where each vertical bar corresponds to the number of

sequencing reads located at individual chromosomal coordinates. The
locations of ORFs are shown below the peaks. Additional browser shots are
shown in Supplementary Fig. 1.
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ChIP-seq has become a predominant method for profiling 
chromatin epigenomes
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Mei et al. NAR 2017
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Outline
• ChIP-seq technology and development
• ChIP-seq data analysis 

– Strategy
– Peak calling (MACS)
– Peak calling (SICER)
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ChIP-seq data analysis
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ChIP-Seq analysis<p>MACS performs model-based analysis of ChIP-Seq data generated by short read sequencers.</p>

Abstract

We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short
read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of
ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also
uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for
more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms,
and is freely available.

Background
The determination of the 'cistrome', the genome-wide set of

in vivo cis-elements bound by trans-factors [1], is necessary

to determine the genes that are directly regulated by those

trans-factors. Chromatin immunoprecipitation (ChIP) [2]

coupled with genome tiling microarrays (ChIP-chip) [3,4]

and sequencing (ChIP-Seq) [5-8] have become popular tech-

niques to identify cistromes. Although early ChIP-Seq efforts

were limited by sequencing throughput and cost [2,9], tre-

mendous progress has been achieved in the past year in the

development of next generation massively parallel sequenc-

ing. Tens of millions of short tags (25-50 bases) can now be

simultaneously sequenced at less than 1% the cost of tradi-

tional Sanger sequencing methods. Technologies such as Illu-

mina's Solexa or Applied Biosystems' SOLiD™ have made

ChIP-Seq a practical and potentially superior alternative to

ChIP-chip [5,8].

While providing several advantages over ChIP-chip, such as

less starting material, lower cost, and higher peak resolution,

ChIP-Seq also poses challenges (or opportunities) in the anal-

ysis of data. First, ChIP-Seq tags represent only the ends of

the ChIP fragments, instead of precise protein-DNA binding

sites. Although tag strand information and the approximate

distance to the precise binding site could help improve peak

resolution, a good tag to site distance estimate is often
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Data and text mining

A clustering approach for identification of enriched
domains from histone modification ChIP-Seq data
Chongzhi Zang1, Dustin E. Schones2, Chen Zeng1, Kairong Cui2, Keji Zhao2

and Weiqun Peng1,∗
1Department of Physics, The George Washington University, Washington, DC 20052 and 2Laboratory of Molecular
Immunology, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
Received on March 3, 2009; revised on May 7, 2009; accepted on May 27, 2009

Advance Access publication June 8, 2009

Associate Editor: Joaquin Dopazo

ABSTRACT
Motivation: Chromatin states are the key to gene regulation and
cell identity. Chromatin immunoprecipitation (ChIP) coupled with
high-throughput sequencing (ChIP-Seq) is increasingly being used
to map epigenetic states across genomes of diverse species.
Chromatin modification profiles are frequently noisy and diffuse,
spanning regions ranging from several nucleosomes to large domains
of multiple genes. Much of the early work on the identification
of ChIP-enriched regions for ChIP-Seq data has focused on
identifying localized regions, such as transcription factor binding
sites. Bioinformatic tools to identify diffuse domains of ChIP-enriched
regions have been lacking.
Results: Based on the biological observation that histone
modifications tend to cluster to form domains, we present a method
that identifies spatial clusters of signals unlikely to appear by
chance. This method pools together enrichment information from
neighboring nucleosomes to increase sensitivity and specificity.
By using genomic-scale analysis, as well as the examination of
loci with validated epigenetic states, we demonstrate that this
method outperforms existing methods in the identification of ChIP-
enriched signals for histone modification profiles. We demonstrate
the application of this unbiased method in important issues in
ChIP-Seq data analysis, such as data normalization for quantitative
comparison of levels of epigenetic modifications across cell types
and growth conditions.
Availability: http://home.gwu.edu/∼wpeng/Software.htm
Contact: wpeng@gwu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Covalent modifications of chromatin, including DNA methylation
and histone modifications, play critical roles in gene regulation
and cell lineage determination and maintenance (Bernstein et al.,
2007; Felsenfeld and Groudine, 2003). Defects in these epigenetic
controls have been implicated in many pathological conditions
in humans. Genome-scale profiling of these epigenetic marks has
been dramatically facilitated by the recent progress in the ultra

∗To whom correspondence should be addressed.

high-throughput massively parallel sequencing technologies (Barski
et al., 2007; Mikkelsen et al., 2007). ChIP-Seq combines chromatin
immunoprecipitation (ChIP) with high-throughput sequencing to
map genome-wide chromatin modification profiles and transcription
factor (TF) binding sites. It is characterized by high resolution, a
quantitative nature, cost effectiveness and no complication due to
probe hybridization as encountered in ChIP-chip assays (Schones
and Zhao, 2008). A large amount of data has recently been generated
using the ChIP-Seq technique, and these datasets call for new
analysis algorithms.

Binding of TFs is mainly governed by their sequence specificity
and therefore is typically associated with very localized ChIP-Seq
signals in the genome. A number of algorithms have been developed
to find the exact locations of TF binding sites from ChIP-Seq
data (Chen et al., 2008; Fejes et al., 2008; Ji et al., 2008; Johnson
et al., 2007; Jothi et al., 2008; Kharchenko et al., 2008; Nix et al.,
2008; Rozowsky et al., 2009; Valouev et al., 2008; Zhang et al.,
2008a). In contrast, the signals for histone modifications, histone
variants and histone-modifying enzymes are usually diffuse and
lack of well-defined peaks, spanning from several nucleosomes to
large domains encompassing multiple genes (Barski et al., 2007;
Pauler et al., 2009; Wang et al., 2008; Wen et al., 2009) (see,
e.g. Figure S1). The detection of diffuse signals often suffers from
high noise level and lack of saturation in sequencing coverage.
These generally weak signals render approaches seeking strong local
enrichment, such as those peak-finding algorithms used in finding
TF binding sites, inadequate.

Many modification marks are known to form broad
domains (Barski et al., 2007; Wang et al., 2008). This is believed
to be helpful in stabilizing the chromatin state and propagating
such states through cell division robustly (Bernstein et al., 2007).
A well-studied case is the trimethylation of histone H3 lysine 9
(H3K9me3). H3K9me3 recruits HP1 via its chromodomain. HP1
in turn recruits H3K9 methyltransferase Suv39h, which modifies
H3K9 on other histones in the vicinity, thereby self-propagating
the heterochromatin state (Aagaard et al., 1999; Bannister et al.,
2001; Lachner et al., 2001). Another example is the trimethylation
of histone H3 lysine 27 (H3K27me3). H3K27me3 is generated
by the activity of the Polycomb complex, PRC2, and is believed
to recruit the PRC1 complex (Schwartz and Pirrotta, 2007). In
Drosophila, it has been suggested that the spreading of H3K27me3

1952 © The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
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ChIP-seq data analysis overview
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Scale
chr19:

500 bases hg19
15,308,000 15,308,100 15,308,200 15,308,300 15,308,400 15,308,500 15,308,600 15,308,700 15,308,800 15,308,900 15,309,000 15,309,100 15,309,200

User Supplied Track

@ILLUMINA-8879DC:231:KK:3:1:1070:945 1:Y:0:
NNNAATACAGTCAGAAACATATCATATTGGAGAATA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1153:945 1:Y:0:
NNNAAGCACACAGAAGATAACTAAACAATCAAGTAG
####################################
@ILLUMINA-8879DC:231:KK:3:1:1222:945 1:Y:0:
NNNAAGGGTCTTGAGAAGAAATCATTCTGGATGGCA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1304:939 1:Y:0:
NNNCCAGGCTCCCGCGATTCTCCTGCCTCAGCTTCT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1354:945 1:Y:0:
NNNCTCTTCCTTAGCTAAACTTTCAACTAAGCCAAA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1411:932 1:Y:0:
NNNGTAGGACCATTGGCGTTGCGACACAAAAAATTT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1496:937 1:Y:0:
NNNTTCATCGGGTTGAGAGTCCCCTTGTTGCATGCA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1533:939 1:Y:0:
NNNATTTTCCCGTTCCAGGTCGCAATTTCCGCCGTT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1573:940 1:Y:0:
NNNGGGGTGCGCCTTTAGTCCCAGCTACTCAGGAAC
####################################



ChIP-seq data analysis goals
• Where in the genome do these sequence reads come from? - Sequence 

alignment and quality control 

• What does the enrichment of sequences mean?  - Peak calling

• What can we learn from these data? – Downstream analysis and integration 
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Data formats
• fastq data file:

28

@SRR3728822.1 97ZZTR1:422:C57C3ACXX:7:1101:1249:1883/1
NCAAGACCAGTGTCATGAAGCTTTCTCCCTCTTCTAGGAGTTTTACAGCTC
+
#11ADDFFFBFDHGGIJIJJJIEIIJJGHGJFIIHCEHHE?DFHGFHIIJE
@SRR3728822.2 97ZZTR1:422:C57C3ACXX:7:1101:1461:1902/1
NGATTCATAGCTGAATTCTACCAGATGTACAAAGAAGAGCTAGTACCATTA
+
#1=BDFFFHHHHHJJJJIJJJJJJJJJJJJJJJIJJJJJGIIJHGIIJIJC
@SRR3728822.3 97ZZTR1:422:C57C3ACXX:7:1101:1479:1943/1
TGAAGATGGCTGAGAACTCCTTAACAGGCAAAATAGGTTTTGTTGGCCGGG
+
C@@FFFFFGHHGGJJJIJJJJJIJJJJIGJFGIJIJJFGHIIIJJIJJIIG
@SRR3728822.4 97ZZTR1:422:C57C3ACXX:7:1101:1287:1958/1
ATATGAACAAACCTTACCTCAGTGGATTCTCAGAACAACCTCTTGAGGTAT
+
CCCFFFFFGHGHHJJIJJJJJJHJJJIJJJIJGIJJJIGHGIJJJGIJEFE
@SRR3728822.5 97ZZTR1:422:C57C3ACXX:7:1101:1515:1796/1
NATTGTGTTTTAGTCTGAAATATCATTTCATGTGGAGAATTCCTTACTGTC
+
#1=DDDFDHHHDHHIIJIIIIJJIHHGHIIGIIIIGIIGIJJIJJIIJJFF
@SRR3728822.6 97ZZTR1:422:C57C3ACXX:7:1101:1585:1807/1
NATAGTTAAAACGGTCTTTCTTTTTGAGATGGAATTTTGCTCTTGTTGCCC
+
#4=DFFFFHHHHHJGIIJJJJJJJJJIIHIJJJIJJJJJJJJJJJJJJJJJ



Data formats
• BED:

chr11 10344210 10344260 255 0 -
chr4 76649430 76649480 255 0 +
chr3 77858754 77858804 255 0 +
chr16 62688333 62688383 255 0 +
chr22 33031123 33031173 255 0 -

• SAM/BAM: aligned sequencing reads

• bedGraph, Wig, bigWig: pile-up profiles for browser 
visualization

29



Sequencing quality assessment: fastqc
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Sequencing quality assessment: fastqc
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ChIP-seq read mapping
• alignment of each sequence read: bowtie, BWA (Burrows–Wheeler Algorithm)

• Concepts/Terminology:

32

cannot map to the reference genome
can map to multiple loci in the genome
can map to a unique/best location in the genome

✗
✗
✔

DNA fragment

Reads (tags)

Binding site

Cleavage (cut) site



Redundancy control

• Non-redundant rate: 

• PBC (PCR Bottleneck Coefficient):

33

✔

4           3            1

# non-redundant reads
# mapped reads

# mapped reads:         12
# non-redundant reads: 8
# locations w/ reads: 8
# locations w/ 1 read:  7

# locations w/ 1 read
# locations w/ reads

8/12 = 66.7%

7/8 = 87.5%



DNA fragment size estimation
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Original algorithm of MACS 
v1
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Cross-correlation
• Correlation between two strings with a displacement

• Auto-correlation: Cross-correlation with itself
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Cross-correlation: example
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Auto-correlation: example
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https://youtu.be/B7BFgCXCqGU
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Auto-correlation: example
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408 C. Cocco and F. Bavaud
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Fig. 6 Cross-autocorrelation index according to the lag r varying from 0 to n. Left: Canon in D
Major by Pachelbel with ! equal to a measure. Middle and right: first movement of the String
Quartet No. 1 in F major, Op. 18 by Beethoven with ! equal to a measure

In the latter, ".#v/ is the inertia of the voice v [see the first part of (4)],
".#˛;#ˇ/ D 1

2

P
st fsftD

˛ˇ
st D P

s fs
P

j $! ˛
sj $
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sj ! P
j
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j

N$! ˇ
j is the cross-

inertia between the voice ˛ and the voice ˇ, where D˛ˇ
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j . $
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sj ! $! ˛
tj /. $
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sj !
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tj / is the cross-dissimilarity between two time intervals of two voices, and finally

"loc.#
˛;#ˇ/ D 1
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˛ˇ
st D P

s fs
P

j $! ˛
sj $
! ˇ

sj ! P
st est

P
j $! ˛

sj $
! ˇ

tj is the
local cross-inertia between voices ˛ and ˇ.

In particular, ".#;#/ D ".#/ and "loc.#;#/ D "loc.#/, so ı.#;#/ D
ı.#/ D ı given in (3). It must be noticed that this formalism works in this specific
context because f ˛

t D f
ˇ
t D ft D 1

n
due to the normalization of# or#v and since

all voices have the same number of time intervals.
This cross-correlation index is computed on two multiple-voice music pieces

with the same exchange matrix as the one proposed for the autocorrelation index
(Fig. 6). For Pachelbel’s canon, highest peaks on the left graph appear at r D 2 for
the cross-autocorrelation between violins I and II and between violins II and III, and
at r D 4 between violins I and III, corresponding to the lag of two or four measures
between the starts of each violin. For Beethoven’s string quartet (center and right
graphs), peaks at r D 0 reveal largest melodic similarities between violin I and
violin II on the one hand, and between viola and cello on the other hand. Moreover,
both graphs exhibit large peaks at r D 114 measures, corresponding to a repetition
in the music piece.

Thus, the cross-autocorrelation index allows the comparison of different voices
of a music piece. It can also be implemented to compare two music piece variants.
See, e.g., Ellis and Poliner (2007), who apply cross-correlation on audio files.

3.3 Between Scores Analysis

To measure the configuration similarity between two musical scores a and b, a
weighted dual version of the RV-Coefficient proposed by Robert and Escoufier

Cocco C & Bavaud F, 2015



DNA fragment size estimation
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Original algorithm of MACS 
v1
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Retrieve DNA fragments

• Full length retrieval (MACS)

• Partial retrieval (sharpen the signal)

• Point retrieval (SICER)

40

d d
Extend d

Shift d/2
Expand to d/2

Shift d/2



Pile up: Signal map generation
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• bedGraph:

chr4 10344200 10344250 5
chr4 10344250 10344300 10
chr4 10344300 10344350 25
chr4 10344350 10344400 15
chr4 10344400 10344450 8

• wiggle:
track type=wiggle_0
variableStep chrom=chr4 span=50
10344200 5
10344250 10
10344300 25
10344350 15
10344400 8

• bigWig: indexed binary format 



ChIP-seq: Study design

• Background Control: Input or IgG
– Input chromatin: sonicated/digested 

chromatin without immunoprecipitation
– IgG: “unspecific” immunoprecipitation

• Study Control: 
– Control exp sample: ChIP + input
– Treated exp sample: ChIP + input

42



ChIP-seq: Peak calling

• Goal: Identify regions in the 
genome enriched for 
sequence reads:
– Compared to genomic 

background
– Compared to input control
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MACS: model
• Model-based Analysis for ChIP-Seq
• Read distribution along the genome ~ Poisson distribution 

(λBG= total tag / genome size)
Negative binomial distribution (MACS2)

• ChIP-seq show local biases in the genome
– Chromatin and sequencing bias
– 200-300bp control windows have too few tags
– But can look further

Dynamic λlocal = 
max(λBG, [λctrl, λ1k,] λ5k, λ10k)

• B-H adjustment to correct for FDR
– p-value → q-value

Zhang et al, Genome Bio, 2008
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ChIP

Control
300bp
1kb
5kb
10kb



MACS: Output interpretation

# tag size is determined as 51 bps
# total tags in treatment: 19442622
# tags after filtering in treatment: 17218335
# maximum duplicate tags at the same position in treatment = 1
# Redundant rate in treatment: 0.11
# d = 141
# alternative fragment length(s) may be 141 bps
chr start end length abs_summit pileup -log10(pvalue) fold_enrichment -
log10(qvalue) name
chr1 2603 2989 387 2870 18.00 6.68596 3.52825 3.66748 AR_peak_1
chr1 138179 138371 193 138281 18.00 14.90779 7.93021 11.47829 AR_peak_2
chr1 36515 36714 200 36609 16.00 12.59143 7.05394 9.25447 AR_peak_3
chr1 201091 201231 141 201114 10.00 7.58293 5.23859 4.50002 AR_peak_4
chr1 69373 69558 186 69452 18.00 9.61904 4.93737 6.41821 AR_peak_5

45

Original algorithm of MACS 
v1
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Data Visualization

• bedGraph to bigWig
• macs2 output data
• IGV
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Quality Control
• FRiP (Fraction of Reads in Peaks) score

– 1-10% for TF is normal

• Number of peaks
– Number of peaks with high fold-enrichment, e.g, 5, 10, …

– 2000

• Sequence conservation

• Fraction of peaks within regulatory regions
– 80%
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Biological interpretation: ChIP-seq captures a snapshot 
of binding patterns from a cell population

48

• TF intrinsic property
• Binding activity
• Cellular heterogeneity



Data flow and QC summary
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Raw
sequence

reads
• fastq

Aligned 
reads • BAM/BED

Profile;
Peaks

• bedGraph/Wig/bigWig

• BED
MACS2

Bowtie2/BWA
Reference genome

QC measures

• Sequence quality (fastqc)

• Mapping quality (uniquely mapped ratio)

• Library complexity (PBC)

• Fold enrichment, peaks

• Signal/Noise (FRIP score)

• Regulatory annotation
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Ex
pe

rim
en

ta
l p

ro
ce

du
re

Raw sequence reads (fastq)

Mapped reads (sam/bam/bed)

Non-redundant reads (sam/bam/bed)

Peaks (bed)

Pile-up for visualization 
(bedGraph, wig, bigwig)

C
om

pu
ta

tio
na

l a
na

ly
si

s

alignment (bowtie2/BWA)

redundancy assessment

peak calling

macs/
SICER

downstream analysis,
data integration

Biology


