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Histone marks

Nucleosome Core Particles
Core Histones: H2A, H2B, H3, H4
Covalent modifications on histone

tails include:
. . s>
methylation (me), = { i
k8 | Histone H4
acetylation (ac), stz B P
phosphorylation, H3K27ac
ubiquitylation, ... Egﬁjx;
Histone variants: H2A.Z, H3.3,... H3K9me3
: if : H3K27me3
Histone modifications are H3K36me3

implicated in influencing gene
expression. Allis C. et al. Epigenetics 2006



Functional annotation of common histone marks

Functional Annotation Histone Marks
Promoters H3K4me3
Bivalent/Poised Promoter H3K4me3/H3K27me3
Transcribed Gene Body H3K36me3

Enhancer (both active and poised) H3K4me1

Active Enhancer H3K4me1/H3K27ac
Polycomb Repressed Regions H3K27me3
Heterochromatin H3K9me3

Modified from Rivera & Ren Cell 2013
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First ChlP-seq for histone modifications
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SUMMARY

Histone modifications are implicated in influ-
encing gene expression. We have generated
high-resolution maps for the genome-wide
distribution of 20 histone lysine and arginine
methylations as well as histone variant H2A.Z,
RNA polymerase Il, and the insulator binding
protein CTCF across the human genome using
the Solexa 1G sequencing technology. Typical
patterns of histone methylations exhibited
at promoters, insulators, enhancers, and tran-
scribed regions are identified. The mono-
methylations of H3K27, H3K9, H4K20, H3K79,
and H2BK5 are all linked to gene activation,
whereas trimethylations of H3K27, H3K9, and
H3K79 are linked to repression. H2A.Z associ-
ates with functional regulatory elements, and
CTCF marks boundaries of histone methylation
domains. Chromosome banding patterns are
correlated with unique patterns of histone mod-
ifications. Chromosome breakpoints detected
in T cell cancers frequently reside in chromatin
regions associated with H3K4 methylations.
Our data provide new insights into the function
of histone methylation and chromatin organiza-
tion in genome function.

biological processes. Among the various modifications,
histone methylations at lysine and arginine residues are
relatively stable and are therefore considered potential
marks for carrying the epigenetic information that is stable
through cell divisions. Indeed, enzymes that catalyze the
methylation reaction have been implicated in playing crit-
ical roles in development and pathological processes.

Remarkable progress has been made during the past
few years in the characterization of histone modifications
on a genome-wide scale. The main driving force has
been the development and improvement of the “ChlIP-
on-chip” technique by combining chromatin immunopre-
cipitation (ChIP) and DNA-microarray analysis (chip). With
almost complete coverage of the yeast genome on DNA
microarrays, its histone modification patterns have been
extensively studied. The general picture emerging from
these studies is that promoter regions of active genes
have reduced nucleosome occupancy and elevated his-
tone acetylation (Bernstein et al., 2002, 2004; Lee et al.,
2004; Liu et al., 2005; Pokholok et al., 2005; Sekinger
et al., 2005; Yuan et al., 2005). High levels of H3K4me1,
H3K4me2, and H3K4me3 are detected surrounding tran-
scription start sites (TSSs), whereas H3K36me3 peaks
near the 3’ end of genes.

Significant progress has also been made in characteriz-
ing global levels of histone modifications in mammals.
Several large-scale studies have revealed interesting in-
sights into the complex relationship between gene ex-
pression and histone modifications. Generally, high levels
of histone acetviation and H3K4 methvlation are detected

© 2008 Nature Publishing Group http://www.nature.com/naturegenetics
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Combinatorial patterns of histone acetylations and
methylations in the human genome

Zhibin Wang'>, Chongzhi Zang>>, Jeffrey A Rosenfeld>-, Dustin E Schones!, Artem Barskil,
Suresh Cuddapah!, Kairong Cui!, Tae-Young Roh!, Weiqun Peng?, Michael Q Zhang® & Keji Zhao!

Histones are characterized by numerous posttranslational
modifications that influence gene transcription'2. However,
because of the lack of global distribution data in higher
eukaryotic systems®, the extent to which gene-specific
combinatorial patterns of histone modifications exist remains
to be determined. Here, we report the patterns derived from
the analysis of 39 histone modifications in human CD4+

T cells. Our data indicate that a large number of patterns

are associated with promoters and enhancers. In particular,

we identify a common modification module consisting of 17
modifications detected at 3,286 promoters. These modifications
tend to colocalize in the genome and correlate with each other
at an individual nucleosome level. Genes associated with this
module tend to have higher expression, and addition of more
modifications to this module is associated with further
increased expression. Our data suggest that these histone
modifications may act cooperatively to prepare chromatin

for transcriptional activation.

Histones are subject to numerous covalent modifications, including
methylation and acetylation, that occur mainly at their N-terminal
tails and that can affect transcription of genes>*°. Extensive studies
have established that histone acetylation is primarily associated with
gene activation, whereas methylation, depending on its position and
state, is associated with either repression or activation®'. Various
models, including the histone code, the signaling network and the
charge neutralization model, have been proposed to account for the
function of histone modifications''~'%. The histone code hypothesis

level (see Methods section for data deposition), and analyzed these
together with the H2A.Z and 19 histone methylation maps we
generated previously!”.

We first systematically evaluated the specificities of the acetylation
antibodies used in this study (Supplementary Methods, Supplemen-
tary Table 1 and Supplementary Fig. 1 online). Competition assays
using modified and unmodified peptides indicated that most anti-
bodies showed specificity for the desired acetylation (Supplementary
Fig. 1). The H4K5ac and H3K4ac antibodies demonstrated some
crossreactivity toward H4K12ac and H3K9ac, respectively, in a con-
dition with excess competitor peptides (Supplementary Fig. 1d.j),
and the H4K91ac antibody did not work in protein blotting. Thus, the
results for these modifications should be interpreted with caution. Of
note, H2AK9ac has not been reported previously, and H3K4ac has
only been identified by mass-spectrometry analysis and has not been
previously characterized functionally'. Protein blotting indicated that
these acetylations indeed exist in human CD4" T cells (Supplemen-
tary Fig. 1j,0). We previously analyzed the genome-wide distribution
of H2BK5mel (ref. 15), and protein blotting data in this study
indicated that this methylation exists in human cells and that the
H2BK5mel antibody is specific (Supplementary Fig. 1p).

Next, we determined the genomic distribution patterns of these
histone acetylations using the ChIP-Seq technique'®, which we pre-
viously confirmed yields H3K4me3 distribution patterns similar to
those generated by the ChIP-SAGE (GMAT) strategy'>!”. To validate
the histone acetylation data, we compared the genomic distribution
patterns of the K9/K14-diacetylated histone H3 from ChIP-SAGE!®
with the separately examined patterns of H3K9ac and H3K14ac in



Transcription Factors vs. Histone Marks

DNA-binding proteins
(Transcription factors)

Histone Marks (Histone
modifications, histone variants,
chromatin regulators™)

Cell type specificity

Both factor and profile

Profile

Signal width (“peak size”) Narrow Narrow or broad
Chromatin accessibility High High or low

DNA sequence motif Yes No

Resolution Up to 1-10bp Nucleosome (200bp)




Histone modification patterns are diffuse

Noisy

Hard to see “peaks”

Enriched regions are spread out
Lack saturation

Why?
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« PRC1/PRC2

Histone modification tends to spread out

Domain
formation
model for
repressive

- —
- HP1

Nucleation

> Propagation
H3K9me3

H3K27/me3




Experimental procedure

Biology

T downstream analysis,
data integration

¢ Immunoprecipitation Peaks (bed)
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] eak callin
7 P g

‘ DNA purification

Pile-up for visualization
(bedGraph, wig, bigwig) macs/

”~ SICER

‘ End repair, adaptor ligation

== Non-redundant reads (sam/bam/bed)
el

¢ Cluster generation
T redundancy assessment

I m Mapped reads (sam/bam/bed) -

T alignment (bowtie2/BWA)

~

_— P » Raw sequence reads (fastq)

Computational analysis




ChlIP-seq data analysis

Method

Model-based Analysis of ChIP-Seq (MACS)
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Abstract

We present Model-based Analysis of ChlP-Seq data, MACS, which analyzes data generated by short
read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of
ChlP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also
uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for
more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms,
and is freely available.

Background tional Sanger sequencing methods. Technologies such as Illu-
The determination of the 'cistrome’, the genome-wide set of  mina's Solexa or Applied Biosystems' SOLiD™ have made
in vivo cis-elements bound by trans-factors [1], is necessary ~ ChIP-Seq a practical and potentially superior alternative to
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Data and text mining
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ABSTRACT
Motivation: Chromatin states are the key to gene regulation and
cell identity. Chromatin immunoprecipitation (ChIP) coupled with
high-throughput sequencing (ChIP-Seq) is increasingly being used
to map epigenetic states across genomes of diverse species.
Chromatin modification profiles are frequently noisy and diffuse,
spanning regions ranging from several nucleosomes to large domains
of multiple genes. Much of the early work on the identification
of ChIP-enriched regions for ChIP-Seq data has focused on
identifying localized regions, such as transcription factor binding
sites. Bioinformatic tools to identify diffuse domains of ChlP-enriched
regions have been lacking.
Results: Based on the biological observation that histone
modifications tend to cluster to form domains, we present a method
that identifies spatial clusters of signals unlikely to appear by
chance. This method pools together enrichment information from
neighboring nucleosomes to increase sensitivity and specificity.
By using genomic-scale analysis, as well as the examination of
loci with validated epigenetic states, we demonstrate that this
method outperforms existing methods in the identification of ChIP-
enriched signals for histone modification profiles. We demonstrate
the application of this unbiased method in important issues in
ChIP-Seq data analysis, such as data normalization for quantitative
comparison of levels of epigenetic modifications across cell types
and growth conditions.
Availability: http://home.gwu.edu/~wpeng/Software.htm
Contact: wpeng@gwu.edu

y infor i Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Covalent modifications of chromatin, including DNA methylation
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high-throughput massively parallel sequencing technologies (Barski
et al., 2007; Mikkelsen et al., 2007). ChIP-Seq combines chromatin
immunoprecipitation (ChIP) with high-throughput sequencing to
map genome-wide chromatin modification profiles and transcription
factor (TF) binding sites. It is characterized by high resolution, a
quantitative nature, cost effectiveness and no complication due to
probe hybridization as encountered in ChIP-chip assays (Schones
and Zhao, 2008). A large amount of data has recently been generated
using the ChIP-Seq technique, and these datasets call for new
analysis algorithms.

Binding of TFs is mainly governed by their sequence specificity
and therefore is typically associated with very localized ChIP-Seq
signals in the genome. A number of algorithms have been developed
to find the exact locations of TF binding sites from ChIP-Seq
data (Chen er al., 2008; Fejes et al., 2008; Ji et al., 2008; Johnson
et al., 2007; Jothi et al., 2008; Kharchenko et al., 2008; Nix et al.,
2008; Rozowsky et al., 2009; Valouev et al., 2008; Zhang et al.,
2008a). In contrast, the signals for histone modifications, histone
variants and histone-modifying enzymes are usually diffuse and
lack of well-defined peaks, spanning from several nucleosomes to
large domains encompassing multiple genes (Barski et al., 2007;
Pauler et al., 2009; Wang et al., 2008; Wen et al., 2009) (see,
e.g. Figure S1). The detection of diffuse signals often suffers from
high noise level and lack of saturation in sequencing coverage.
These generally weak signals render approaches seeking strong local
enrichment, such as those peak-finding algorithms used in finding
TF binding sites, inadequate.

Many modification marks are known to form broad
domains (Barski et al., 2007; Wang et al., 2008). This is believed
to be helpful in stabilizing the chromatin state and propagating
such states through cell division robustly (Bernstein et al., 2007).
A well-studied case is the trimethylation of histone H3 lysine 9
(H3K9me3). H3K9me3 recruits HP1 via its chromodomain. HP1

in tnrn recrmite HIKO methvltranceferace Snivi0Oh which modifiec
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Data preprocessing

MACS

SICER

DNA fragment size estimation

Peak model

Cross-correlation

DNA fragment retrieval

Full length (extend d)

-_—

—_—-—

Point position (shift d/2)

Signal profile generation

Fragment pile up

Read count in bins

A

A

i,

H3K27me3 IIII
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Signal detection

MACS SICER
Initial model Poisson Poisson
Signal scan Sliding windows with bandwidth Non-overlapping bin read count

Peak region identification

Merge windows

Merge windows allowing gaps

Peak scoring

Pile-up signal amount

Aggregate score on islands

Significance modeling

Poisson with dynamic A

Asymptotic estimation of
iIsland score statistics model,
then compare with control

Additional information

Read count, Pile-up height,
Summit position

Read count, peak score, E-value




SICER: Definition of Island

» Eligible and ineligible
windows

> P2 <po

1=l

Read count

 Eligible windows are
separated by gaps of

ineligible windows. : e

 Island: cluster of eligible Genome coordinates
windows separated by
gaps of size at most g
windows.

Example islands for
Ihb=2 and g=2



SICER: Scoring islands

The scoring function is based on the probability of finding the observed tag
count in a random background.

For a window with m reads,
— The probability of finding m reads is Poisson P(m, /)
— A=wN/L isthe average number of reads in each window

Scoring function for an eligible window:
S=—InP(m,A)

Key quantity: the score of an island
— Aggregate score of all eligible windows in the island
— It corresponds to the background probability of finding the observed pattern



SICER: Island score statistics

Probability distribution of scores for a single window in a random background
model:

p(s)=) 8(s—s )P U1)

[>1y
Probability of a window being ‘ineligible’:

Gap factor:
G=1+t+1"+---+18



SICER: Island score statistics

l\7|(s) I\A//I(s—s’) G p(s)
— ~—— 7"\

 Recursion relation

S
M(S):G(k,lg,g)fds/M (s—s")p(s)
S0
* Probability of finding an island of score s:

M (s)=t5T1M (58!
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SICER: Island score statistics

« Asymptotics of island score é 1ES
. . . . 1E4§ — Recursion 3
distribution in the background E3F  Asymptotics|

100

M (s)=aexp (—pBs)

[S—
S
mT \HHH‘ T

G(A,lg,g)ZP ()P =1

[>1p

Cumulative number of isl
-

—

o

BOW =
m

« Statistic: E-value
— Expected number of islands with score above st in the background

Z LM(s)<e

S=>ST



SICER: Significance determinations

 Significance determination with random background model:
— E-value determines an island score threshold

+ Significance determination with control sample
— ldentify candidate islands using random background

— For each candidate island, compare sample with control
— P-value ) 2 P(ng,cn.)

I/lzns

— False Discovery Rate (FDR)



SICER result examples
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Experimental procedure

Biology

T downstream analysis,
data integration

¢ Immunoprecipitation Peaks (bed)

A )
O A

/)
] eak callin
7 P g

‘ DNA purification

Pile-up for visualization
(bedGraph, wig, bigwig) macs/

”~ SICER

‘ End repair, adaptor ligation

== Non-redundant reads (sam/bam/bed)
el

¢ Cluster generation
T redundancy assessment

I m Mapped reads (sam/bam/bed) -

T alignment (bowtie2/BWA)

~

_— P » Raw sequence reads (fastq)

Computational analysis




Scales of histone mark islands and chromatin domains

 Narrow: a few nucleosomes, 0.5kb ~ 5kb
— H3K4me3, H2A.Z, etc.

« Broad: 5kb~100kb

— Gene loci, chromatin domains, super-enhancers
— H3K4me1, H3K27ac, H3K36me3, H3K27me3, etc.

* Very broad: >100kb

— Large chromatin domains, chromatin compartments
— H3K9me3, H3K27me3



Other approaches for chromatin domains

« ChromHMM: Hidden Markov Models (Ernst & Kellis)

* Recognicer: Coarse-graining (Zang, et al. 2020)



RECOGNICER: Coarse-graining

« Block transformation under
a majority rule ]
« Approach:

— Recursive block
transformation

— Trace back to identify
candidate enriched regions

— Significance determination
— Scale-free

il
[

-™

.E = Ak
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RECOGNICER: Coarse-graining
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cale-free property of chromatin domains
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Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using
restriction and mark pull down biotin paired-ends
Hindlll enzyme with biotin

AAGCTT
TTCGAA

~ .
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Scale-free property of Hi-C maps

Interaction frequency

Multi-Mb large
compartments

POV VI VYV OWVWUN

Eigenvector

Transcription | — S

Broadly inactive i Broadly active
B compartment ) A compartment

~1 Mb TADs

Rowley & Corces, Nat Rev Genet (2018)
CTCF | " L Y )5
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Hi-C analysis

Chromatin compartments

Interaction frequency

Interaction frequency

» Topologically Associating
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Hi-C: Power-law property of contact probability distribution
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Fractal Structures
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Hilbert Curve
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Peano Curve

L~ - - Slope: -1.498

Contact Probability (log 3)
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3D Peano Curve

- - Slope: -1.334

m
\ o
K=}
® -
£
a
©
Q
g
o
©
]
c
1 5T == in 8
S
—— ~ M \—
| s=co==c |
= - s u
I 1 ==-1 - — -14
n # I |
= =R =ny
1 T I 1 _ 1 | 1 |
A Y [ N e T e 165 2 4 6 8 10
1 :L ] = { _— Distance (log 3)
== .=___ |

P eontact(x) = kx”, where a is given by

— 1 —
smooth = '(1+7) and ainterdigitated =-1 34

Lieberman-Aiden et al. Science 2009



Fractal Structure of Genome Organization

D  Nuclear
scale
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scale
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SICER2

* https://zanglab.qgithub.io/SICER2/

[ o & SICER2 Documentation X

& C & zanglab.github.io/SICER2/

4 SICER2 Documentation

Search docs

Quick Start
SICER2
Introduction
Installation
Using SICER2
Using SICER2 for differential peak calling
Example Use
Workflow of SICER2
Understanding SICER2 Outputs

Contact

+

Docs » Quick Start O Edit on GitHub

SICER2

Redesigned and improved ChlP-seq broad peak calling tool SICER

build | passing

GitHub Repo

Introduction

Chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) can be used
to map binding sites of a protein of interest in the genome. Histone modifications usually occupy
broad chromatin domains and result in diffuse patterns in ChlP-seq data that make it difficult to
identify signal enrichment. SICER, a spatial clustering approach for the identification of ChIP-enriched
regions, was developed for calling broad peaks from ChIP-seq data.

Usability of the original SICER software has been affected by increased throughputs of ChlP-seq
experiments over the years. We now present SICER2 a more user-friendly version of SICER that has
been redisgned and streamlined to handle large ChIP-seq data sets. This new Python package
supports multiple job submissions on cluster systems and parallel processing on multicore
architectures.
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e Check what factors regulate your gene of interest, what factors bind in your interval or have a significant binding overlap with your peak set. Have a try at CistromeDB Toolkit.
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Species Biological Sources < Factors
Homo sapiens 1-cell pronuclei AATF
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Results Zheng et al. Nucleic Acids Res. 2018
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ChlP-seq data analysis and signal detection

« MACS for narrow peaks
« SICER for broad domains

Hi-C
Domain structure of 3D genome organization



