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Outline
• Spatial Transcriptomics

– Sequencing based techniques
• 10X Visium

– Imaging based techniques
• MERFISH

• Encoding of sequence data
– Hemming code
– One Hot
– Simplex encoding
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Single-cell and Spatial Transcriptomics
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Image credit: Bo Xia @BoXia7

Bulk transcriptomics

Single-cell transcriptomics

Spatial transcriptomics

Physiological reconstruction



Dimensionalities in transcriptomes

• Samples
• Transcripts / Genes
• Cells / Nucleus
• Spatial Locations
• Time / Differentiation stage
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Spatial transcriptomics technologies

• Sequencing based

• Major steps
– 1. Dissection, capturing
– 2. Barcoding, sequencing

• Examples
– 10X Visium
– Slide-seq
– Nanostring GeoMx

• Imaging based

• Major steps
– 1. Target and probe design
– 2. Fluorescence in situ 

hybridization (FISH)

• Examples
– MERFISH
– seqFISH
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Spatial transcriptomics technologies

Sequencing based Imaging based

Pros
• Transcriptome-wide coverage

• Easy scale-up

• Sequencing data analysis

• Single-cell/single-molecule

• High spatial resolution (<1μm)

• Continuous spatial locations

Cons
• Fixed spatial dissection

• Low spatial resolution (~100μm)

• Not single-cell

• Coverage restricted to probes

• More difficult experiments

• Challenging data analysis
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10X Genomics - Visium
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10X Genomics - Visium
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10X Genomics - Visium
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10X Genomics

Product Sheet

10x Genomics 3

Figure 4. Visium for FFPE profiles the whole transcriptome in archival FFPE tissue samples with full tissue coverage. Visium Spatial Gene 
Expression for FFPE was used to interrogate approximately 18,000 genes in an FFPE human breast ductal carcinoma in situ sample. An H&E-stained 
image (A) was overlaid with data from the Visium for FFPE whole transcriptome analysis, shown here as total genes (B) and spot clustering analysis 
(C). The expression levels and spatial organization of key breast cancer genes (D) are shown: ERBB2 (HER2), progesterone receptor (PGR), and 
estrogen receptor (ESR1).

Figure 3. Visium Spatial Gene Expression for FFPE tissues is highly sensitive, specific, and reproducible. Whole transcriptome analysis of fresh 
frozen or FFPE mouse brain was performed using either Visium Spatial Gene Expression for fresh frozen or FFPE tissue, respectively. A. The Visium 
Spatial for FFPE data shows a high correlation with that of Visium for fresh frozen tissue, demonstrating comparable results between the two assays 
and high sensitivity. B. Spatial mRNA expression data for Hpca, demonstrates expression in the hippocampus in both the fresh frozen and FFPE 
samples and coincides with known expression patterns, demonstrating the specificity of the Visium for FFPE assay. C. Serial sections taken from a 
mouse brain FFPE sample and processed with the Visium Spatial for FFPE assay demonstrate high reproducibility, both in clustering and total unique 
molecular identifiers (UMIs) detected. 

Interrogation of ~18,000 genes in a human breast ductal carcinoma in situ FFPE sample

A. H&E

D. Three key breast cancer biomarkers

A. C.

B. Total genes C. Spot clusters

Comparable performance to Visium for fresh frozen tissues
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Computational Problems

• Localized gene expression profiling

• Spatial clustering

• Spatial decomposition and gene

imputation

• Spatial location reconstruction for 

scRNA-seq

• Cellular interaction or gene interaction 

inference
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Zeng et al. Genome Bio 2022



MERFISH
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Multiplexed Error-Robust Fluorescence In Situ 
Hybridization



FISH

14genome.gov



Single-Molecule FISH (smFISH)
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Lior Pachter Lab



seqFISH
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MERFISH
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Hamming Distance
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100→011 has Hamming distance 3
010→111 has Hamming distance 2



Hamming Distance
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0100→1001 has Hamming distance 3
0110→1110 has Hamming distance 1
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Chen et al. Science 2015

MERFISH



MERFISH
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Gray Code and One-Hot Code
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Decimal Binary Gray Decimal of Gray One-Hot

0 0000 0000 0 0000000000000001

1 0001 0001 1 0000000000000010

2 0010 0011 3 0000000000000100

3 0011 0010 2 0000000000001000

4 0100 0110 6 0000000000010000

5 0101 0111 7 0000000000100000

6 0110 0101 5 0000000001000000

7 0111 0100 4 0000000010000000

8 1000 1100 12 0000000100000000

9 1001 1101 13 0000001000000000

10 1010 1111 15 0000010000000000

11 1011 1110 14 0000100000000000

12 1100 1010 10 0001000000000000

13 1101 1011 11 0010000000000000

14 1110 1001 9 0100000000000000

15 1111 1000 8 1000000000000000



One-hot encoding for DNA sequences
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Simplex Encoding (Hadamard)
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Simplex encoding reduces dimensionality
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k naïve k-mer (4k) Simplex encoding (12k-8)

4 256 40

6 4096 64

8 65536 88

10 1048576 112
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SELMA (Simplex-Encoded Linear Model for Accessible chromatin) 
improves cleavage bias estimation

Hu et al., under review.  bioRxiv 2021
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Exaggerated false positives by popular 
di"erential expression methods when analyzing 
human population samples
Yumei Li1†, Xinzhou Ge2†, Fanglue Peng3, Wei Li1* and Jingyi Jessica Li2,4,5,6,7*  

Background
RNA-seq is a transcriptome profiling approach using deep-sequencing technologies [1–
3]. Since RNA-seq was developed over a decade ago, it has become an indispensable tool 
for genome-wide transcriptomic studies. One primary research task in these studies is 
the identification of differentially expressed genes (DEGs) between two conditions (e.g., 
tumor and normal samples) [3]. "is task’s long-standing, core challenge is the small sam-
ple size, typically two or three replicates per condition. Many statistical methods have 
been developed to address this issue by making parametric distributional assumptions on 
RNA-seq data, and the two most popular methods of this type are DESeq2 [4] and edgeR 
[5]. However, as sample sizes have become large in population-level RNA-seq studies, 
where dozens to thousands of samples were collected from individuals [6, 7], a natural 
question to ask is whether DESeq2 and edgeR remain appropriate.

Results and discussion
To evaluate the performance of DESeq2 and edgeR on identifying DEGs between two 
conditions, we applied the two methods to 13 population-level RNA-seq datasets with 
total sample sizes ranging from 100 to 1376 (Additional file 1: Table S1). We found that 

Abstract 
When identifying differentially expressed genes between two conditions using human 
population RNA-seq samples, we found a phenomenon by permutation analysis: two 
popular bioinformatics methods, DESeq2 and edgeR, have unexpectedly high false 
discovery rates. Expanding the analysis to limma-voom, NOISeq, dearseq, and Wilcoxon 
rank-sum test, we found that FDR control is often failed except for the Wilcoxon rank-
sum test. Particularly, the actual FDRs of DESeq2 and edgeR sometimes exceed 20% 
when the target FDR is 5%. Based on these results, for population-level RNA-seq studies 
with large sample sizes, we recommend the Wilcoxon rank-sum test.
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Exaggerated false DEGs can be identified by 
DESeq2 and edgeR from human samples
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likely to be identified as DEGs by the two methods from the permuted datasets (Fig. 1D 
and Additional file 1: Fig. S2). "is finding is consistent with a recent paper, which also 
reported that selecting the genes with the largest estimated differences between the two 
conditions would inflate the FDR [12]. As biologists tend to believe that these large-fold-
change genes are more likely true DEGs (which is not necessarily true because a data-
set may contain no true DEGs at all), the fact that these genes are false positives would 
likely waste experimental validation efforts.

Out of curiosity and as a means of verification, we investigated the biological func-
tions of the spurious DEGs identified by DESeq2 or edgeR from the permuted datasets. 
Unexpectedly, these spurious DEGs’ top 5 enriched gene ontology (GO) terms included 
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likely to be identified as DEGs by the two methods from the permuted datasets (Fig. 1D 
and Additional file 1: Fig. S2). "is finding is consistent with a recent paper, which also 
reported that selecting the genes with the largest estimated differences between the two 
conditions would inflate the FDR [12]. As biologists tend to believe that these large-fold-
change genes are more likely true DEGs (which is not necessarily true because a data-
set may contain no true DEGs at all), the fact that these genes are false positives would 
likely waste experimental validation efforts.

Out of curiosity and as a means of verification, we investigated the biological func-
tions of the spurious DEGs identified by DESeq2 or edgeR from the permuted datasets. 
Unexpectedly, these spurious DEGs’ top 5 enriched gene ontology (GO) terms included 
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Wilcoxon rank-sum test is better when sample size > 8
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While the permutation analysis created true negatives (non-DEGs) to allow FDR eval-
uation, it did not allow the evaluation of DEG identification power, which would require 
true positives (DEGs) to be known. Hence, we generated 50 (identically and indepen-
dently distributed) semi-synthetic datasets with known true DEGs and non-DEGs from 
each of the 12 GTEx and TCGA datasets. !en, we used these semi-synthetic datasets 
to evaluate the FDRs and power of the six DEG identification methods (Methods). In 
comparing 386 heart left ventricle samples and 372 atrial appendage samples in a GTEx 
dataset, only the Wilcoxon rank-sum test consistently controlled the FDR under a range 
of thresholds from 0.001 to 5% (Fig. 2A). In contrast, the other five methods, especially 
DESeq2 and edgeR, failed to control the FDR consistently. Moreover, we compared the 
power of the six methods conditional on their actual FDRs (Methods). (Due to the trade-
off between FDR and power, power comparison is only valid when the actual FDRs are 
equal.) As shown in Fig. 2A, the Wilcoxon rank-sum test outperformed the other five 
methods in terms of power.

Finally, to investigate how sample sizes would influence the performance of the six 
methods, we down-sampled each semi-synthetic dataset to obtain per-condition sam-
ple sizes ranging from 2 to 100. Again, only the Wilcoxon rank-sum test consistently 
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Fig. 2 The Wilcoxon rank-sum test has the best FDR control and power on heart left ventricle vs. atrial 
appendage GTEx datasets with semi-synthetic ground truths. A The FDR control (left panel), power (middle 
panel) given the claimed FDRs, and power given the actual FDRs (right panel) under a range of FDR 
thresholds from 0.001 to 5%. B The FDR control (left), power given the claimed FDRs (middle), and power 
given the actual FDRs (right) for a range of per-condition sample sizes from 2 to 100, under FDR thresholds 
10% (top panels) and 1% (bottom panels). The claimed FDRs, actual FDRs, and power were all calculated as 
the averages of 50 randomly down-sampled datasets



Gene expression can deviate from NB distribution
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Fig. S3 

 
Fig. S3. Quantile-quantile (Q-Q) plots showing the discrepancy between observed read 

counts and the negative binominal theoretical quantiles estimated by edgeR and DESeq2.  

A. The Q-Q plot for CCNL1 with theoretical read counts in two conditions (pre-therapy and on- 

therapy) estimated by edgeR.  

B. The Q-Q plot for EPGN with theoretical read counts in two conditions (pre-therapy and on- 

therapy) estimated by DESeq2.  

  



Summary
• Spatial transcriptomics techniques
• Encoding strategies
• Differential gene expression
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