UNIT 3 TRANSCRIPTOMICS

Spatial Transcriptomics

April 28, 2022

Outline

- Spatial Transcriptomics
 - Sequencing based techniques
 - 10X Visium
 - Imaging based techniques
 - MERFISH
- Encoding of sequence data
 - Hemming code
 - One Hot
 - Simplex encoding

www.nature.com/nmeth/January 2021 Vol.18 No.1

nature methods

Method of the Year 2020: Spatially resolved transcriptomics

Single-cell and Spatial Transcriptomics

Bulk transcriptomics

Single-cell transcriptomics

Physiological reconstruction

Image credit: Bo Xia @BoXia7

Dimensionalities in transcriptomes

- Samples
- Transcripts / Genes
- Cells / Nucleus
- Spatial Locations
- Time / Differentiation stage

Spatial transcriptomics technologies

- Sequencing based
- Major steps
 - 1. Dissection, capturing
 - 2. Barcoding, sequencing
- Examples
 - 10X Visium
 - Slide-seq
 - Nanostring GeoMx

- Imaging based
- Major steps
 - 1. Target and probe design
 - 2. Fluorescence in situ hybridization (FISH)
- Examples

 MERFISH
 - seqFISH

Spatial transcriptomics technologies

	Sequencing based	Imaging based	
	Transcriptome-wide coverage	Single-cell/single-molecule	
Pros	Easy scale-up	 High spatial resolution (<1µm) 	
	Sequencing data analysis	Continuous spatial locations	
	 Fixed spatial dissection 	Coverage restricted to probes	
Cons	• Low spatial resolution (~100 μ m)	More difficult experiments	
	Not single-cell	Challenging data analysis	

10X Genomics - Visium

¹⁰X Genomics

10X Genomics - Visium

10X Genomics - Visium

Interrogation of ~18,000 genes in a human breast ductal carcinoma in situ FFPE sample

A. H&E

B. Total genes Genes 6,000 4,000 2,000

C. Spot clusters

D. Three key breast cancer biomarkers

10X Genomics

Computational Problems

- Localized gene expression profiling
- Spatial clustering
- Spatial decomposition and gene imputation
- Spatial location reconstruction for scRNA-seq
- Cellular interaction or gene interaction inference

MERFISH

Multiplexed Error-Robust Fluorescence In Situ Hybridization

FISH

Lior Pachter Lab

MERFISH

Hamming Distance

 $100 \rightarrow 011$ has Hamming distance 3 010→111 has Hamming distance 2

Hamming Distance

→1001 has Hamming distance 3 →1110 has Hamming distance 1

Chen et al. Science 2015

MERFISH

Chen et al. Science 2015

Gray Code and One-Hot Code

Decimal	Binary	Gray	Decimal of Gray	One-Hot
0	0000	0000	0	000000000000000000000000000000000000000
1	0001	0001	1	000000000000000000000000000000000000000
2	0010	0011	3	000000000000100
3	0011	0010	2	000000000001000
4	0100	0110	6	000000000010000
5	0101	0111	7	000000000100000
6	0110	0101	5	00000000100000
7	0111	0100	4	00000001000000
8	1000	1100	12	00000010000000
9	1001	1101	13	00000100000000
10	1010	1111	15	0000010000000000
11	1011	1110	14	0000100000000000
12	1100	1010	10	0001000000000000
13	1101	1011	11	0010000000000000
14	1110	1001	9	0100000000000000
15	1111	1000	8	1000000000000000

One-hot encoding for DNA sequences

Simplex Encoding (Hadamard)

 $AC = A \otimes C = -1$ 1 -1 1 -1 1 1 -1 1 $AG = A \otimes G = -1 -1$ 1 1 1 -1 $AT = A \otimes T =$ 1 1 -1 -1 -1 1 -1 -1 -1 1 $CA = C \otimes A = -1$ 1 1 -1 -1 - 1 $CC = C \otimes C =$ 1 -1 1 -1 1 -1 1 - 1 $CG = C \otimes G =$ 1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 $CT = C \otimes T = -1 - 1 - 1$ 1 1 $GA = G \otimes A = -1$ 1 1 -1 1 $GC = G \otimes C =$ 1 -1 1 1 - 1 1 $GG = G \otimes G =$ 1 -1 1 1 -1 -1 -1 1 $GT = G \otimes T = -1 - 1 - 1 - 1 - 1 - 1$ $TA = T \otimes A =$ 1 -1 -1 1 -1 -1 1 -1 -1 $TC = T \otimes C = -1$ 1 -1 -1 1 -1 -1 1 -1 $TG = T \otimes G = -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1$ 1 $TT = T \otimes T =$ 1 1 1 1 1 1 p = 1 + 3k + 9(k - 1) = 12k - 8

Simplex encoding reduces dimensionality

k	naïve k-mer (4 ^k)	Simplex encoding (12k-8)
4	256	40
6	4096	64
8	65536	88
10	1048576	112

SELMA (Simplex-Encoded Linear Model for Accessible chromatin) improves cleavage bias estimation

26

SHORT REPORT

Open Access

Yumei Li^{1†}, Xinzhou Ge^{2†}, Fanglue Peng³, Wei Li^{1*} and Jingyi Jessica Li^{2,4,5,6,7*}

*Correspondence: wei.li@uci.edu; lijy03@g. ucla.edu [†]Yumei Li and Xinzhou Ge contributed equally to this work. ¹ Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA ² Department of Statistics, University of California, Los

Abstract

When identifying differentially expressed genes between two conditions using human population RNA-seq samples, we found a phenomenon by permutation analysis: two popular bioinformatics methods, DESeq2 and edgeR, have unexpectedly high false discovery rates. Expanding the analysis to limma-voom, NOISeq, dearseq, and Wilcoxon rank-sum test, we found that FDR control is often failed except for the Wilcoxon rank-sum test. Particularly, the actual FDRs of DESeq2 and edgeR sometimes exceed 20% when the target FDR is 5%. Based on these results, for population-level RNA-seq studies with large sample sizes, we recommend the Wilcoxon rank-sum test.

Exaggerated false DEGs can be iden DESeq2 and edgeR from human se

Wilcoxon rank-sum test is better when sample size > 8

Gene expression can deviate from NB distribution

Summary

- Spatial transcriptomics techniques
- Encoding strategies
- Differential gene expression