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Outline

» Clustering
— Hierarchical clustering (e.g., WGCNA)
— K-means clustering
— Louvain method (e.g., scRNA-seq)

* Regulatory Networks

— Gene Ontology
— GSEA
— BART




Why clustering?
- Genes do not work alone.
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A PubMed analysis shows that the vast majority of human genes have been studied in the context of cancer. As such, the
study of nearly any human gene can be justified based on existing literature by its potential relevance to cancer. Moreover,
these results have implications for analyzing and interpreting large-scale analyses.
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Cancer as the most studied biomedical topic

Cancer is one of the most common diseases of modern times. In industrialized countries, cancer affects roughly one in two
people at some point during their lives [1.] and cancer incidence and mortality is expected to continue increasing given the
ageing populations worldwide [2.]. Not surprisingly, cancer attracts a huge amount of research funding from government,
private, and philanthropic sources [3.]. At the time of writing, over 4 million of the over 30 million publications in PubMed
mention cancer. For comparison, roughly 350 000 publications mention stroke. As of 2020, over 200 000 papers are
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Clustering

* We can cluster either genes or samples, or both

— Genes: have similar expression profiles over different samples
or conditions

— Samples: have similar expression profiles over all genes
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Clustering

* Motivation for clustering:
— Visualizing data, e.g. differential expression
— Understand general characteristics of data
— Make generalizations about gene behavior

— Classify samples / — genex
v —=—geney

——genez

» Goal of clustering:
— Maximize inter (between)-cluster distance
— Minimize intra (within)-cluster distance
— “Distance™. 1 — correlation
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Correlation does not tell everything

Anscombe’s Quartet 1973

Property

Mean of x

: 2
Sample variance of x : s,

Mean of y

: 2
Sample variance of y : s,

X2 Correlation between x and y

Linear regression line
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Correlation does not tell everything

An outlier can make The effect size may be too
correlation statistics small to be useful (r=1)

misleading (r=0.9)
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Distance Metftrics
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Cluster Stability

« See whether clustering gives the same result if:
— Mask out some data (e.g. only sample a subset of genes or samples)
— Introduce a little noise to the data
— Change some parameters

* May select subsets of data points for clustering
— Differentially expressed genes
— Genes on certain pathways, etc.



Hierarchical Clustering



Hierarchical Clustering (Agglomerative)
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Hierarchical Clustering (Agglomerative)
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Hierarchical Clustering (Agglomerative)
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Hierarchical Clustering (Agglomerative)

* Repeatedly

— Merge two nodes (either a gene or a cluster) that are closest to each other
— Re-calculate the distance from newly formed node to all other nodes
— Branch length represents distance

* Linkage: distance from newly formed node to all other nodes



Hierarchical Clustering Linkage
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Brain Teasers

» |If we have N data points
How many internal nodes are in the H-cluster?

How many possible ways to draw the H-cluster?

il



Partitional Clustering

 Disjoint groups
* From hierarchical clustering:

— Cut a line from hierarchical clustering
— By varying the cut height, we could produce arbitrary number of clusters

cutting here results
TR 1] L A ——

cutting here results
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K-means Clustering



K-means Clustering

« Choose K centroids at random

Expression in Sample1
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K-means Clustering

« Choose K centroids at random
« Assign object j to closest centroid

lteration = 1
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K-means Clustering

« Choose K centroids at random

» Assign object j to closest centroid
* Recalculate centroid based on ®
current cluster assignment °®
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K-means Clustering

Choose K centroids at random

Assign object / to closest centroid

Recalculate centroid based on ®
current cluster assignment oo

Repeat until assignment stabilize o
O

o X

lteration = 3



K-means Clustering

Deterministic
— Initial cluster centers are important
— Can be trapped in local optimal

How to pick initial cluster centers
— Run hierarchical cluster, find cut line

— Random start many times with different
initial centers

Might not be tolerant to outliers or
noise

dimension 2
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K-means Clustering: Problem With Outliers
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Partition Around Medoids

* Pick one real data point (closest to

all) instead of average as the °
centroid of the cluster o ®
O
* More robust in the presence of o °
noise and outliers -
O o o
O
O




How to Pick K

K = 2, gradually increase

Improvement: reduce within-cluster distance and increase between-cluster distance
Cost: cost with each increase in K

Compare the cost with improvement, stop when not worth it

W(k) = total sum of squares within clusters
B(k) = sum of squares between cluster means
n = total number of data points

Calinski & Harabasz, 1974

max CH (k) = Bk) Itk =1)
W (k)/(n—-k)
Hartigan, 1975:  stop when H(k) < 10
H(K) = (5 1y -k 1)

Wk +1)
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How to Pick K

Calinski(1974)

Hartigan(1975)
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* |n practice for genomics data:

« Only cluster genes that are variable across samples

* The magic number: 7




Consensus Clustering

Cluster ensembles

Reconcile clustering information about the same dataset coming from
different sources or from different runs of the same algorithm:
» Tight Clustering (Tseng and Wong, Biometrics 2005)

Reconcile clustering information about the same samples using different
profiling techniques (data types):
 iCluster (Shen et al. Bioinformatics 2009)



Louvain Method



Networks

« Network: nodes/vertices and edges
« Degree of a node
« Degree distribution of a network

(a) Random network

Complete network
Random network

Scale free network: social network and
most networks in nature
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Network based

Modularity:
1 kik,
Q= g 2|4 g ol

A is the adjacency matrix

m is the number of edges in
the network

k. is the degree of vertex i
c; is the community of vertex i

Modularity Community

OptimizatV Aggregation

7 14

2nd pass 26 24

—> (@ O

Figure 1. Visualization of the steps of our algorithm. Each pass is made of
two phases: one where modularity is optimized by allowing only local changes
of communities; one where the communities found are aggregated in order to
build a new network of communities. The passes are repeated iteratively until
no increase of modularity is possible. 33
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Functional Analysis of
Transcriptomics Profiling Data



Gene Annotation

« How to report differentially expressed genes or gene clusters?
— Enriched for certain pathways, certain functions, or proteins localized in the same
complex, etc.?
* Gene Ontology Consortium
— Ashburner et al. 1998
— Annotate gene function in the human genome
— Now extended to many model organisms

 Why do we care?
— Effectively communicate biomedical knowledge

— Organize and summarize annotations in a structured way
— Allow effective and meaningful computation on gene annotations



GO Categories

« Molecular function
— Describe a gene’s jobs or abilities
— e.g., transporters, transcription factor

» Biological process
— Events or pathways
— e.g., cell differentiation, maturation, development

» Cellular component
— Describe locations (subcellular structures, macromolecular complexes)
— e.g., nucleus, cell membrane, protein complexes



« DAVID

GO Tools

o0 e Tl DAVID: Functional Annotation X + v

€ 5> C & david.ncifcrf.govltools.jsp d % N = 0O Q

.‘1\' E .ﬁ'

Analysis Wizard o
DAVID Bioinformatics Resources (2021 Update), ‘&‘ l R] =

NIAID/NIH

Home Start Analysis | Shortcut to DAVID Tools | Technical Center I Downloads & APIs | Term of Service | ' About DAVID | About LHRI

*** Welcome to DAVID (2021 Update) ***

*** |f you are looking for DAVID 6.8, it is still accessible on this server until retirement on June 1, 2022, ***

List Background

Step 1: Enter Gene List

or

Choose File
(]

Step 2: Select Identifier

AFFYMETRIX_3PRIME_IVT_ID v

Analysis Wizard

Tell us how you like the tool
Contact us for questions

« Step 1. Submit your gene list through left panel.

An example:

Copy/paste IDs to "box A" -> Select Identifier as "Affy_ID" -> List Type as "Gene List" -> Click "Submit"
button
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Gene Set Enrichment Analysis (GSEA)

Enrichment plot: P53_DOWN_KANNAN

Enrichment score
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Fig 1: Enrichment plot: P53_DOWN_KANNAN
Profile of the Running ES Score & Positions of GeneSeot Mombers on the Rank Ordered List
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How to identify functional TFs? _____

« Ontology based Wu ‘ J_
— Limited by existing database

Rankin Ortred Datsset

t g8
$ s 8

» Co-expression based

— Expression of a TF # Regulatory
— activity of the TF

> « DNA sequence motif based
— Motif occurrence # TF binding
— Difficult to tackle distal enhancers
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Gene TSS Gene TSS Gene TSS Gene TSS
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BART: Binding Analysis for Regulation of Transcription
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http://bartweb.org/

Summary

» Clustering
— Hierarchical clustering (e.g., WGCNA)
— K-means clustering
— Louvain method (e.g., scRNA-seq)

* Regulatory Networks

— Gene Ontology
— GSEA
— BART
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