
Clustering Algorithms,
Regulatory Networks

May 3, 2022

Acknowledgement: Materials in some slides are borrowed from Harvard STAT115 course taught by X. Shirley Liu.
Copyright of images from the internet belongs to their respective owners.

1

Outline
• Clustering

– Hierarchical clustering (e.g., WGCNA)
– K-means clustering
– Louvain method (e.g., scRNA-seq)

• Regulatory Networks
– Gene Ontology
– GSEA
– BART

2

Why clustering?
- Genes do not work alone.

3

4

Clustering
• We can cluster either genes or samples, or both

– Genes: have similar expression profiles over different samples
or conditions

– Samples: have similar expression profiles over all genes

5

Clustering
• Motivation for clustering:

– Visualizing data, e.g. differential expression
– Understand general characteristics of data
– Make generalizations about gene behavior
– Classify samples

• Goal of clustering:
– Maximize inter (between)-cluster distance
– Minimize intra (within)-cluster distance
– “Distance”: 1 – correlation -2

-1

0

1

2

3

4

5

6

1 2 3 4 5 6

gene x
gene y
gene x
gene y
gene z

-2

-1

0

1

2

3

4

5

6

1 2 3 4 5 6

gene x
gene y
gene z

6

Correlation does not tell everything

7

Anscombe’s Quartet 1973

Correlation does not tell everything

8

Distance Metrics

9
https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

10

Cluster Stability
• See whether clustering gives the same result if:

– Mask out some data (e.g. only sample a subset of genes or samples)
– Introduce a little noise to the data
– Change some parameters

• May select subsets of data points for clustering
– Differentially expressed genes
– Genes on certain pathways, etc.

11

Hierarchical Clustering

12

Hierarchical Clustering (Agglomerative)

13

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Hierarchical Clustering (Agglomerative)

14

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Hierarchical Clustering (Agglomerative)

15

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Hierarchical Clustering (Agglomerative)

• Repeatedly
– Merge two nodes (either a gene or a cluster) that are closest to each other
– Re-calculate the distance from newly formed node to all other nodes
– Branch length represents distance

• Linkage: distance from newly formed node to all other nodes

16

Single Complete

Average: pairwise distances

Hierarchical Clustering Linkage

||||
),(||),(||),(

vu

kvvkuu
kj cc

ccdistcccdistcccdist
+

´+´
=

17

Brain Teasers
• If we have N data points

How many internal nodes are in the H-cluster?

How many possible ways to draw the H-cluster?

18

Partitional Clustering

• Disjoint groups
• From hierarchical clustering:

– Cut a line from hierarchical clustering
– By varying the cut height, we could produce arbitrary number of clusters

19

K-means Clustering

20

K-means Clustering
• Choose K centroids at random

Iteration = 0
Ex

pr
es

si
on

 in
 S

am
pl

e1

Expression in Sample2

21

K-means Clustering
• Choose K centroids at random
• Assign object i to closest centroid

Iteration = 1

22

K-means Clustering
• Choose K centroids at random
• Assign object i to closest centroid
• Recalculate centroid based on

current cluster assignment

Iteration = 2

23

K-means Clustering
• Choose K centroids at random
• Assign object i to closest centroid
• Recalculate centroid based on

current cluster assignment
• Repeat until assignment stabilize

Iteration = 3

24

K-means Clustering
• Deterministic

– Initial cluster centers are important
– Can be trapped in local optimal

• How to pick initial cluster centers
– Run hierarchical cluster, find cut line
– Random start many times with different

initial centers

• Might not be tolerant to outliers or
noise

25

K-means Clustering: Problem With Outliers

0

1

2

3

4

5

0 1 2 3 4 5

ex
pr

es
si

on
 in

 c
on

di
tio

n
2

expression in condition 1

x1

x2 x3

26

Partition Around Medoids
• Pick one real data point (closest to

all) instead of average as the
centroid of the cluster

• More robust in the presence of
noise and outliers

27

How to Pick K
• K = 2, gradually increase
• Improvement: reduce within-cluster distance and increase between-cluster distance
• Cost: cost with each increase in K
• Compare the cost with improvement, stop when not worth it

• W(k) = total sum of squares within clusters
• B(k) = sum of squares between cluster means
• n = total number of data points
• Calinski & Harabasz, 1974

• Hartigan, 1975: stop when H(k) < 10

28

)/()(
)1/()()(max
knkW

kkBkCH
-
-

=

)1)(1
)1(
)(()(---
+

= kn
kW
kWKH

How to Pick K

• In practice for genomics data:
• Only cluster genes that are variable across samples
• The magic number: 7

29

number of clusters

5 10 15 20

0
50

0
10

00
15

00

Hartigan(1975)

x

y

0 10 20 30

-2
0

-1
5

-1
0

-5
0

number of clusters

5 10 15 20

20
00

40
00

60
00

80
00

10
00

0

Calinski(1974)

Consensus Clustering
• Cluster ensembles

• Reconcile clustering information about the same dataset coming from
different sources or from different runs of the same algorithm:
• Tight Clustering (Tseng and Wong, Biometrics 2005)

• Reconcile clustering information about the same samples using different
profiling techniques (data types):
• iCluster (Shen et al. Bioinformatics 2009)

30

Louvain Method

31

Networks
• Network: nodes/vertices and edges
• Degree of a node
• Degree distribution of a network

– Complete network
– Random network
– Scale free network: social network and

most networks in nature

32

Louvain Method
• Network based

• Modularity:

• A is the adjacency matrix
• m is the number of edges in

the network
• ki is the degree of vertex i
• ci is the community of vertex i

33

J.S
tat.M

ech.
(2008)

P
10008

Fast unfolding of communities in large networks

Figure 1. Visualization of the steps of our algorithm. Each pass is made of
two phases: one where modularity is optimized by allowing only local changes
of communities; one where the communities found are aggregated in order to
build a new network of communities. The passes are repeated iteratively until
no increase of modularity is possible.

This simple algorithm has several advantages. First, its steps are intuitive and easy to
implement, and the outcome is unsupervised. Moreover, the algorithm is extremely fast,
i.e. computer simulations on large ad hoc modular networks suggest that its complexity
is linear on typical and sparse data. This is due to the fact that the possible gains
in modularity are easy to compute with the above formula and that the number of
communities decreases drastically after just a few passes so that most of the running
time is concentrated on the first iterations. The so-called resolution limit problem of
modularity also seems to be circumvented thanks to the intrinsic multi-level nature of our
algorithm. Indeed, it is well known [22] that modularity optimization fails to identify
communities smaller than a certain scale, thereby inducing a resolution limit on the
community detected by a pure modularity optimization approach. This observation is
only partially relevant in our case because the first phase of our algorithm involves
the displacement of single nodes from one community to another. Consequently, the
probability that two distinct communities can be merged by moving nodes one by one is
very low. These communities may possibly be merged in the later passes, after blocks
of nodes have been aggregated. However, our algorithm provides a decomposition of the
network into communities for different levels of organization. In order to illustrate this
feature, let us focus on the ring of 30 cliques discussed in [22], where the cliques are
composed of 5 nodes and are interconnected through single links. The first pass of the
algorithm finds the natural partition of the network, where each community corresponds
to one clique. The second pass finds the global maximum of modularity where cliques
are combined into groups of 2. Consequently, if the cliques are indeed merged in the final

doi:10.1088/1742-5468/2008/10/P10008 5

J.S
tat.M

ech.
(2008)

P
10008

Fast unfolding of communities in large networks

Contents

1. Introduction 2

2. Method 3

3. Application to large networks 6

4. Conclusion and discussion 10

Acknowledgments 11

References 11

1. Introduction

Social, technological and information systems can often be described in terms of complex
networks that have a topology of interconnected nodes combining organization and
randomness [1, 2]. The typical size of large networks such as social network services,
mobile phone networks or the web is now counted in millions, if not billions, of nodes
and these scales demand new methods to retrieve comprehensive information from their
structure. A promising approach consists in decomposing the networks into sub-units
or communities, which are sets of highly interconnected nodes [3]. The identification of
these communities is of crucial importance as they may help to uncover a priori unknown
functional modules such as topics in information networks or cyber-communities in social
networks. Moreover, the resulting meta-network, whose nodes are the communities, may
then be used to visualize the original network structure.

The problem of community detection requires the partition of a network into
communities of densely connected nodes, with the nodes belonging to different
communities being only sparsely connected. Precise formulations of this optimization
problem are known to be computationally intractable. Several algorithms have therefore
been proposed to find reasonably good partitions in a reasonably fast way. This search
for fast algorithms has attracted much interest in recent years due to the increasing
availability of large network datasets and the impact of networks on everyday life. One
can distinguish several types of community detection algorithms: divisive algorithms
detect inter-community links and remove them from the network [4]–[6], agglomerative
algorithms merge similar nodes/communities recursively [7] and optimization methods
are based on the maximization of an objective function [8]–[10]. The quality of the
partitions resulting from these methods is often measured by the so-called modularity
of the partition. The modularity of a partition is a scalar value between −1 and 1
that measures the density of links inside communities as compared to links between
communities [5, 11]. In the case of weighted networks (weighted networks are networks
that have weights on their links, such as the number of communications between two
mobile phone users), it is defined as [12]

Q =
1

2m

∑

i,j

[
Aij −

kikj

2m

]
δ(ci, cj), (1)

doi:10.1088/1742-5468/2008/10/P10008 2

Clustering vs. Visualization

34

Functional Analysis of
Transcriptomics Profiling Data

35

Gene Annotation
• How to report differentially expressed genes or gene clusters?

– Enriched for certain pathways, certain functions, or proteins localized in the same
complex, etc.?

• Gene Ontology Consortium
– Ashburner et al. 1998
– Annotate gene function in the human genome
– Now extended to many model organisms

• Why do we care?
– Effectively communicate biomedical knowledge
– Organize and summarize annotations in a structured way
– Allow effective and meaningful computation on gene annotations

36

GO Categories
• Molecular function

– Describe a gene’s jobs or abilities
– e.g., transporters, transcription factor

• Biological process
– Events or pathways
– e.g., cell differentiation, maturation, development

• Cellular component
– Describe locations (subcellular structures, macromolecular complexes)
– e.g., nucleus, cell membrane, protein complexes

37

GO Tools

• DAVID

38

Gene Set Enrichment Analysis (GSEA)

39

How to identify functional TFs?
• Ontology based

– Limited by existing database

• Co-expression based
– Expression of a TF ≠ Regulatory

activity of the TF

• DNA sequence motif based
– Motif occurrence ≠ TF binding
– Difficult to tackle distal enhancers

40

?

?

?

41

BART: Binding Analysis for Regulation of Transcription

gene set

transcription factors

cis-regulatory (enhancer) profile

> 500 DNase-seq

> 1000 H3K27ac ChIP-seq

> 13,000 TF ChIP-seq

Wang et al. Bioinformatics 2018

Adaptive Lasso regression
+ semi-supervised learning

ROC association analysis,
background adjustment,
rank integration

Dataset AUC
TF_a_1 0.92
TF_a_2 0.87
TF_b_1 0.82
TF_a_3 0.73
TF_b_2 0.65
TF_c_1 0.48
TF_c_2 0.39...

...

TF Statistic Z-score P-value

TF_a 18.7 3.0 1.1e-77

TF_b 4.5 2.1 6.7e-06

TF_c -7.1 -1.5 1.3e-12...

TF_a_1

TF_a_2

TF_a_3

TF_b_1

TF_b_2

TF_c_1

TF_c_2
...Public TF ChIP-seq datasets

MappingMARGE

or ChIP-seq DataGene Set

Cis-regulatory profile

M
S

ig
D

B
 G

en
e

S
et

s
or

 H
3K

27
ac

 P
ro

fil
es

A

B

C D

E

F

Zhenjia Wang

42

BART web: infer transcriptional regulators from various inputs

Gene list

ChIP-seq

Hi-C

>13,000 TF ChIP-seq datasets

Cis-regulatory profile

Adaptive Lasso regression

BART: Binding Analysis for Regulation of Transcription

Mapping

differential
interaction

ROC associations

Statistical tests,
Background adjustment,
Irwin-Hall rank integration Cis-regulatory element repertoire

(2.7 million in the human genome,
1.5 million in the mouse genome)

>1000 H3K27ac ChIP-seq

User input Output prediction

Wang et al., Bioinformatics 2018
Wang et al., Bioinformatics 2021
Ma, Wang et al., NAR Genomics & Bioinformatics 2021

Gene list

ChIP-seq

Region set

Hi-C maps

http://bartweb.org

Zhenjia Wang Wenjing Ma

http://bartweb.org/

Summary
• Clustering

– Hierarchical clustering (e.g., WGCNA)
– K-means clustering
– Louvain method (e.g., scRNA-seq)

• Regulatory Networks
– Gene Ontology
– GSEA
– BART

43

44

